Skip to main content
Log in

Composite Fibers with Phase-Change Properties as Thermoregulating Additives to Dry Mortar Mixes with the Possibility of Bimodal Heating

  • RESEARCH
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The possibility of using composite fibers with phase change properties as a thermoregulating additive to dry building mixes (mortar mix) with the possibility of accumulating thermal energy under the action of sunlight and a high-frequency alternating magnetic field is studied. Composite fibers were obtained by adsorption of the organic phase-change material eicosane on fibers of microfibrillar cellulose modified with magnetite nanoparticles. The obtained composites demonstrated specific values of stored thermal energy in the range of 129-148 J/g, depending on the content of eicosane in their composition. It is shown that the addition of 10–15% wt. of composite fibers to the dry building mix makes it possible to store and release thermal energy in hardened samples in a temperature range of 27-43°C, corresponding to melting and crystallization of the eicosane in the structure of the composite fibers. It was shown that addition of the composites affects the dynamics of heating under the action of artificial sunlight and subsequent cooling: the samples with added fiber showed more intense heating and slower cooling compared with control samples when the temperature reached 35°C. Samples of the hardened mixture with addition of the composite fibers also exhibited the ability to accumulate thermal energy when exposed to a high-frequency alternating magnetic field with its subsequent sustained removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Aftab, A. Usman, J. Shi, et al., Energy Environ. Sci., 14, No. 8, 4268-4291 (2021).

    Article  CAS  Google Scholar 

  2. M. A. Abdel-Mawla, M. A. Hassan, A. Khalil, Int. J. Energy Res., 46, No. 9, 11676-11717 (2022).

    Article  Google Scholar 

  3. Y. Zhang, G. Ma, G. Wu et al., Energy Build., 271, No. -, 112314 (2022).

  4. M. Cao, X. Wang, W. Cao, et al., Small., 14, No. 29, 1800987 (2018).

    Article  Google Scholar 

  5. A. E. Pirtsul, M. I. Rubtsova, R. I. Mendgaziev, et al., Mater. Lett., 327, No. , 132997 (2022).

  6. L. L. Adebayo, H. Soleimani, N. Yahya, et al., Ceram. Int., 46, No. 2, 1249-1268 (2020).

    Article  CAS  Google Scholar 

  7. D. Tian, T. Shi, X. Wang, et al., J. Energy Storage, 47, 103574 (2022).

    Article  Google Scholar 

  8. S. Cabana, A. Curcio, A. Michel, et al., Nanomaterials, 10, No. 8, 1548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. V. Voronin, R. I. Mendgaziev, M. I. Rubtsova, et al., Mater. Chem. Front., 6, C. 1033-1045 (2022).

  10. D. Voronin, R. Mendgaziev, A. Sayfutdinova, et al., Materials, 16, No. 1, 29 (2023).

    Article  CAS  Google Scholar 

  11. R. S. Dassanayake, N. Dissanayake, J. S. Fierro, et al., Appl. Spectrosc. Rev., 1-26 (2021).

  12. C. Pucci, A. Degl’Innocenti, M. Belenli Gümüş, et al., Biomaterials Science, 10, No. 9, 2103-2121 (2022).

  13. A. S. Davydov, A. V. Belousov, G. A. Krusanov, et al., J. Appl. Phys., 129, No. 3, 033902 (2021).

    Article  CAS  Google Scholar 

  14. A. Genovese, G. Amarasinghe, M. Glewis, et al., Thermochim. Acta, 443, No. 2, 235-244 (2006).

    Article  CAS  Google Scholar 

  15. X.-X. Zhang, Y.-F. Fan, X.-M. Tao et al., J. Colloid Interface Sci., 281, No. 2, 299-306 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. X. Z. Wu, B. M. Ocko, E. B. Sirota, et al., Science, 261, No. 5124, 1018-1021 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. H. Kraack, E. B. Sirota, M. Deutsch, J. Chem. Phys., 112, No. 15, 6873-6885 (2000).

    Article  CAS  Google Scholar 

Download references

The work was supported by the Russian Science Foundation, project No. 21-79-00176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Voronin.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 3, pp. 28–36 May – June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirtsul, A.E., Mendgaziev, R.I., Komlev, A.S. et al. Composite Fibers with Phase-Change Properties as Thermoregulating Additives to Dry Mortar Mixes with the Possibility of Bimodal Heating. Chem Technol Fuels Oils 59, 449–458 (2023). https://doi.org/10.1007/s10553-023-01545-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01545-1

Keywords

Navigation