Skip to main content
Log in

Effect of Lower Alcohols on the Formation of Methane Hydrate at Temperatures Below the Ice Melting Point

  • RESEARCH
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

This work revealed that most water‑soluble compounds have a dual nature (thermodynamic promotion or hydrate inhibition) depending on thermobaric conditions. Indeed, by lowering the melting point of ice, water‑soluble organic compounds expand the region of water‑containing liquid phase existence below 0°C. This work considered typical thermodynamic hydrate inhibitors as alcohols (methanol, ethanol, and 2‑propanol). It turned out that even methanol does not exhibit inhibitory properties below the ice crystallization line, and it does not affect the equilibrium conditions of methane hydrate formation. In this case, the observed four-phase hydrate–ice–solution–gas equilibrium either corresponds to the hydrate–ice–gas line for the water-methane system (in the case of methanol) or lies at higher temperatures (in the case of ethanol and 2‑propanol). This allowed us to assume that practically any water‑soluble organic compounds will either exhibit the properties of thermodynamic hydrate promoters in a specific temperature range below 0°C or will not affect the hydrate–ice–gas equilibrium. In addition, the presence of the ice and an aqueous liquid mixture in the system accelerates the hydrate growth (compared to the hydrate growth from the bulk phase of ice). It should also be noted that, unlike conventional thermodynamic promoters, methanol does not alter the methane hydrate’s structure and gas capacity, which is more favorable. The data obtained can contribute to developing hydrate‑based technologies for gas storage and separation of gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. H. M. Powell, Journal of the Chemical Society (Resumed), 61‑73 (1948).

  2. A. Hassanpouryouzband, E. Joonaki, M. V. Farahani, et al., Chemical Society Reviews, 49, No. 15, 5225‑5309 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. A. Y. Manakov and A. S. Stoporev, Russian Chemical Reviews, 90, No. 5, 566 (2021).

    Article  Google Scholar 

  4. K. Yasuda and R. Ohmura, Journal of Chemical & Engineering Data, 53, No. 9, 2182‑2188 (2008).

    Article  CAS  Google Scholar 

  5. R. Sun, Z. Fan, K. Li, et al., Physical Chemistry Chemical Physics, 24, No. 31, 18805‑18815 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. V. P. Melnikov, A. N. Nesterov, A. M. Reshetnikov, et al., Chemical Engineering Science, 65, No. 2, 906‑914 (2010).

    Article  CAS  Google Scholar 

  7. A. A. Sizikov and A. Y. Manakov, Fluid Phase Equilibria, 371, 75‑81 (2014).

    Article  CAS  Google Scholar 

  8. K. Shin, I. L. Moudrakovski, C. I. Ratcliffe, et al., Angewandte Chemie, 129, No. 22, 6267‑6271 (2017).

    Article  Google Scholar 

  9. J.‑W. Lee, and S.‑P. Kang, The Journal of Physical Chemistry B, 116, No. 1, 332‑335 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. A. Semenov, R. Mendgaziev, T. Tulegenov, et al., Chemistry and Technology of Fuels and Oils, 58, No. 4, 628‑636 (2022).

    Article  CAS  Google Scholar 

  11. S. J. Henderson and R. J. Speedy, Journal of Physical Chemistry, 91, No. 11, 3069‑3072 (1987).

    Article  CAS  Google Scholar 

  12. F. V. Zhurko, A. Y. Manakov, and V. I. Kosyakov, Chemical Engineering Science, 65, No. 2, 900‑905 (2010).

    Article  CAS  Google Scholar 

  13. A. Dougherty, Z. Bartholet, K. Chumsky, et al., Journal of Geophysical Research: Planets, 123, No. 12, 3080‑3087 (2018).

    Article  Google Scholar 

  14. A. Potts and D. Davidson, the Journal of Physical Chemistry, 69, No. 3, 996‑1000 (1965).

  15. M. S. Wahl, A. Adasen, D. R. Helmet, et al., Fluid Phase Equilibria, 522, 112741 (2020).

    Article  CAS  Google Scholar 

  16. A. P. Semenov, R. I. Mendgaziev, A. S. Stoporev, et al., Chemical Engineering Journal, 423, 130227 (2021).

    Article  CAS  Google Scholar 

  17. A. P. Semenov, A. S. Stoporev, R. I. Mendgaziev, et al., Journal of Chemical Thermodynamics, 137, 119‑130 (2019).

    Article  CAS  Google Scholar 

  18. S. Muromachi, T. Abe, T. Maekawa, et al., Fluid Phase Equilibria, 398, 1‑4 (2015).

    Article  CAS  Google Scholar 

  19. Y. Gong, R. I. Mendgaziev, W. Hu, et al., Chemical Engineering Journal, 429, 132386 (2022).

    Article  CAS  Google Scholar 

  20. M. Lauricella, M. R. Ghaani, P. K. Nandi, et al., The Journal of Physical Chemistry C, 126, No. 13, 6075‑6081 (2022).

    Article  CAS  Google Scholar 

  21. J. S. Pandey, S. Khan, and N. von Solms, Energies, 15, No. 18, 6814 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Stoporev.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 44–48 November – December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarakhmedov, M.B., Semenov, A.P. & Stoporev, A.S. Effect of Lower Alcohols on the Formation of Methane Hydrate at Temperatures Below the Ice Melting Point. Chem Technol Fuels Oils 58, 962–966 (2023). https://doi.org/10.1007/s10553-023-01476-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-023-01476-x

Keywords

Navigation