Skip to main content
Log in

Laser Raman Spectroscopy – An Effective Method for Total Process Control of Poly-α-Olefin Oil Production

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The developed approaches to increasing the analytical selectivity by laser Raman spectroscopy and the use of chemometrics and a proprietary algorithm for self-tuning calibration models with the efficiency and speed of the method have shown a rare and excellent opportunity for informationally equivalent on-line control of all technological stages of the production of poly-α-olefin oils and other products through a network of fiber-optic probes. Oligomers of C6, C8, and C10 α-olefins obtained by heterogeneous chromium-oxide catalysis technology developed at LLC «RN-RD CENTER», as shown by the Raman spectra, differ from analogs obtained by homogeneous synthesis by the variety of unsaturated group structures and a greater width and variability of the molecular-mass distribution, which makes it possible to regulate a wide assortment of low- and high-molecular-mass products. A special case – the atypically high sensitivity of Raman spectra to the chain length – makes it possible during the synthesis to predict and adjust in real time the molecular mass of the oligomers and other target properties and to replace a fleet of traditional analytical equipment with one method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Process Spectroscopy Market (Technology Types - Near infrared (NIR) spectroscopy, Raman spectroscopy and Fourier Transform infrared (FTIR) spectroscopy) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2019–2027. http://www.transparencymarketresearch.com/process-spectroscopy-market.html (accessed May 21, 2021).

  2. K. A. Esmonde-White, M. Cuellar, C. Uerpmann, et al., Anal. Bioanal. Chem., 409, No. 3, 637-649 (2017).

    Article  CAS  Google Scholar 

  3. A. Kh. Kuptsov, O. G. Karchevskaya, T. E. Kron, et al., Neft. Khoz., No. 10, 125-127 (2016).

  4. A. Kh. Kuptsov, T. E. Kron, O. G. Karchevskaya, et al., RU Pat. 2,581,191, Apr. 20, 2016, “Method of determining content of olefin s in synthetic liquid hydrocarbons obtained via Fischer Tropsch method (versions).”

  5. A. Kh. Kuptsov, O. G. Karchevskaya, G. A. Korneeva, et al., Zh. Prikl. Spektrosk., 86, No. 2, 290-297 (2019).

    Google Scholar 

  6. Q. Yang, T. R. Crain, J. T. Lanier, et al., US Pat. 8,940,842, Jan. 27, 2015, “Method for controlling dual catalyst olefin polymerizations.”

  7. A. Kh. Kuptsov, I. A. Arutyunov, L. A. Khakhin, et al., Khim. Tekhnol. Topl. Masel, No. 2, 35-39 (2020).

  8. J. Toussaint, S. Dochow, I. Latka, et al., Opt. Express, 23, No. 4, 5078-5090 (2015).

    Article  CAS  Google Scholar 

  9. S. Reid-Peters, “Group IV base stocks–PAO,” UTS Seminar, ExxonMobil Chemical, XP055260987, Sept. 13-15, 2011, pp. 1-27.

  10. A. Kh. Kuptsov and G. N. Zhizhin, Fourier-transform Raman and Fourier-transform IR Spectra of Polymers [in Russian], Tekhnosfera, Moscow, 2013, 696 pp.

  11. I. Kim, J.-M. Zhou, and H. Chung, J. Polym. Sci., Part A: Polym. Chem., 38, 1687-1697 (2000).

    Article  CAS  Google Scholar 

  12. Yu. V. Zavgorodnev, K. A. Prokhorov, G. Yu. Nikolaeva, et al., Laser Phys., No. 23, 025701 (2013).

  13. E. A. Sagitova, P. Donfack, G. Yu. Nikolaeva, et al., Vib. Spectrosc., No. 84, 139-145 (2016).

  14. I. E. Nifant′ev, A. A. Vinogradov, A. A. Vinogradov, et al., Appl. Catal., A, 549, 40-50 (2018).

    Article  Google Scholar 

  15. E. A. Sagitova, G. Yu. Nikolaeva, K. A. Prokhorov, et al., Laser Phys., No. 29, 015701 (2019).

  16. S. Abbate, G. Zerbi, and S. L. Wunder, J. Phys. Chem., 86, No. 16, 3140-3149 (1982).

    Article  CAS  Google Scholar 

  17. S. M. Kuznetsov, V. S. Novikov, E. A. Sagitova, et al., Laser Phys., 29, 085701 (2019).

    Article  CAS  Google Scholar 

  18. A. Kh. Kuptsov, I. A. Arutyunov, E. V. Zhmaeva, et al., Prib. Tekh. Eksp., No. 4, 96-105 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kh. Kuptsov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 45–51 September–October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuptsov, A.K., Zhmaeva, E.V., Kulik, A.V. et al. Laser Raman Spectroscopy – An Effective Method for Total Process Control of Poly-α-Olefin Oil Production. Chem Technol Fuels Oils 58, 772–778 (2022). https://doi.org/10.1007/s10553-022-01449-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-022-01449-6

Keywords

Navigation