Skip to main content
Log in

Explosive Behavior of CH4/C2H6/C3H8 Mixtures in the SAGD Process with CO2 Fusion Gases in Extra-Heavy Oil Reservoirs

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

In the crude oil recovery industries, explosion accidents involving associated gases can often result in fatal damage. The main purpose of this study is to provide theoretical support and engineering background for the SAGD operations in the extra-heavy oil reservoirs. To investigate the explosive behavior of CH4/C2H6/C3H8 gases and the inhibition mechanism of CO2 gas, the authors have experimentally studied the factors influencing the explosion behavior of the associated gas in a standard-designed 20 L spherical explosion vessel at ambient temperature and pressure. Based on experimental data, they analyzed the explosive parameters of the combustible gas mixtures, including the explosive peak pressure, time to reach the maximum pressure, the velocity of flame propagation, upper explosive limit (UEL), and lower explosive limit (LEL). The results show that a small amount of C2H6/C3H8 could promote the explosive characteristics of CH4. The addition of CO2 gas has a different inhibitory effect on the explosive behavior of CH4/C2H6/C3H8. The explosive overpressure strength of the CH4/C2H6/C3H8 gas mixture decreases with increase in the CO2 concentration. When the CO2 gas is added to the extra-heavy-oil associated gas, the flame propagation velocity of the CH4/C2H6/C3H8 mixture explosion decreases accordingly. Due to the inert effect of the CO2 gas, with the continuous addition of CO2 to the mixture, the UEL parameter of CH4/C2H6/C3H8 decreases linearly and the LEL parameter increases exponentially. The results of the study are important for eliminating potential risks and providing safety management of the SAGD operations at the extra-heavy oil reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. L. Shi, D. Ma, et al., “Experimental and numerical simulation studies on effects of viscosity reducers for steam-assisted gravity drainage performances in extra-heavy oil reservoirs,” J. Pet. Sci. Eng., 173, 146-157 (2019).

    Article  CAS  Google Scholar 

  2. X. Li, L. Shi, et al., “Experimental study on viscosity reducers for SAGD in developing extra-heavy oil reservoirs,” J. Pet. Sci. Eng., 166, 25-32 (2018).

    Article  CAS  Google Scholar 

  3. D. Hua, P. Liu, et al., “Experimental study and numerical simulation of urea-assisted SAGD in developing extra-heavy oil reservoirs,” J. Pet. Sci. Eng., 201(3-4), 08436 (2021).

  4. A. Kumar and H. Hassanzadeh, “Impact of shale barriers on performance of SAGD and ES-SAGD: a review,” Fuel, 289, 119850 (2021).

    Article  CAS  Google Scholar 

  5. Z. Yuan, P. Liu, et al., “Experimental study and numerical simulation of nitrogen-assisted SAGD in developing heavy oil reservoirs,” J. Pet. Sci. Eng., 162, 325-332 (2018).

    Article  CAS  Google Scholar 

  6. G. Hu and Q. Zhao, “Enrichment of low-grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon,” Chem. Eng. Sci., 229, 116152 (2021).

    Article  CAS  Google Scholar 

  7. H. Hassan and H. Pahlavanzadeh, “Thermodynamic modeling and experimental measurement of semi-clathrate hydrate phase equilibria for CH4 in the presence of cyclohexane (CH) and tetra-n-butyl ammonium bromide (TBAB) mixture,” J. Nat. Gas Sci. Eng., 75(6), 103128 (2020).

  8. K. Wang, Y. He, et al., “Experimental study on optimization models for evaluation of fireball characteristics and thermal hazards induced by LNG vapor cloud explosions based on colorimetric thermometry,” J. Hazard. Mater., 366, 282-292 (2019).

    Article  CAS  Google Scholar 

  9. P. Li, P. Huang, et al., “Experimental study on vented explosion overpressure of methane/air mixtures in a manhole,” J. Hazard. Mater., 374, 349-355 (2019).

    Article  CAS  Google Scholar 

  10. K. Wang and Y. He, “ Modified models for prediction of flash point of multi-component mixtures in air compressor system during air injection LTO process of heavy oil reservoirs,” Chem. Technol. Fuels Oils, 2, 46-53 (2019).

  11. P. Li, Z. Liu, et al., “Experimental study on the flammability limits of natural gas/air mixtures at elevated pressures and temperatures,” Fuel, 256, 115950 (2019).

    Article  CAS  Google Scholar 

  12. M. Li, Z. Liu, et al., “Flame propagation characteristics and overpressure prediction of unconfined gas deflagration,” Fuel, 284, 119022 (2021).

    Article  CAS  Google Scholar 

  13. K. Wang, Z. Liu, et al., “Comparative study on blast wave propagation of natural gas vapor cloud explosions in open space based on a full-scale experiment and PHAST,” Energ. Fuel., 30, 6143-6152 (2016).

    Article  CAS  Google Scholar 

  14. K. Wang, Z. Liu, et al., “Long-term consequence and vulnerability assessment of thermal radiation hazard from LNG explosive fireball in open space based on full-scale experiment and PHAST,” J. Loss Prev. Process. Ind., 46, 13-22 (2017).

    Article  Google Scholar 

  15. W. Wang and Z. Sun, “Experimental studies on explosive limits and minimum ignition energy of syngas: a comparative review,” Int. J. Hydrogen Energ., 44(11), 5640-5649 (2019).

    Article  CAS  Google Scholar 

  16. L. Huang and S. Pei, “Assessment of flammability and explosion risks of natural gas-air mixtures at high pressure and high temperature,” Fuel, 247, 47-56 (2019).

    Article  CAS  Google Scholar 

  17. S. Chen and H. Shen, “Effect of initial temperature and initial pressure on vapor explosion characteristics of nitro-thinner,” J. Loss Prev. Process. Ind., 61, 298-304 (2019).

    Article  CAS  Google Scholar 

  18. D. Razus, M. Molnarne, et al., “Estimation of limiting oxygen concentration of fuel-air-inert mixtures at elevated temperatures by means of adiabatic flame temperatures,” Chem. Eng. Process. Process. Intens., 45(3), 193-197 (2006).

    Article  CAS  Google Scholar 

  19. S. Banerjee and B. Hascakir, “Flow control devices in SAGD completion design: enhanced heavy oil/ bitumen recovery through improved thermal efficiency,” J. Pet. Sci. Eng., 169, 297-308 (2018).

    Article  CAS  Google Scholar 

  20. H. F. Coward and G. W. Jones, “Limits of inflammability of gases and vapors,” J. Franklin Inst., 203(1), 161 (1927).

  21. C. Chen, C. Lin, et al., “Growth of diamond from CO2-(C2H2, CH4) gas systems, without supplying additional hydrogen gas,” Surf. Coat. Technol., 52(3), 205-209 (1992).

    Article  CAS  Google Scholar 

  22. Q. Zhang and D. Li, “Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations,” Int. J. Hydrogen Energ., 42(21), 14794-14808 (2017).

    Article  CAS  Google Scholar 

  23. J. Deng and Z. Luo, “Explosive limits of mixed gases containing CH4, CO, and C2H4 in the goaf area,” Min. Sci. Technol., 20(4), 557-562 (2010).

    CAS  Google Scholar 

  24. Y. Koshiba and T. Hasegawa, “Flammability limits, explosive pressures, and applicability of Le Chatelier’s rule to binary alkane–nitrous oxide mixtures,” J. Loss Prev. Process. Ind., 45, 1-8 (2017).

    Article  CAS  Google Scholar 

  25. D. Wang, X. Qian, et al., “Flammability limit and explosion energy of methane in an enclosed pipeline under multi-phase conditions,” Energy, 217, 119355 (2021).

    Article  CAS  Google Scholar 

  26. H. Yan, Z. Liu, et al., “Study of associated gas components and combustion characteristics based on nitrogen-assisted steam stimulation of heavy oils,” Fuel, 282, 118819 (2020).

    Article  CAS  Google Scholar 

  27. L. Huang, Y. Wang, et al., “Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures,” Energy, 186, 115840 (2019).

    Article  CAS  Google Scholar 

  28. S. Pei, G. Cui, et al., “Performance and important engineering aspects of air injection assisted in situ upgrading process for heavy oil recovery,” J. Pet. Sci. Eng., 202, 108554 (2021).

    Article  CAS  Google Scholar 

  29. J. C. Jones, “Fire and explosions: an invited essay,” J. Chem. Health Saf., 16(4), 19-21 (2009).

    Article  CAS  Google Scholar 

  30. B. Vanderstraeten and D. Tuerlinckx, “Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures,” J. Hazard. Mater., 56(3), 237-246 (1997).

    Article  CAS  Google Scholar 

  31. S. Wan, M. Yu, et al., “Influence of obstacle blockage on methane/air explosion characteristics affected by side venting in a duct,” J. Loss Prev. Process. Ind., 54, 281-288 (2018).

    Article  CAS  Google Scholar 

  32. Z. Liu, Y. Zhao, et al., “Experimental and numerical study on internal pressure load capacity and failure mechanism of CO2 corroded tubing,” Energy, 158, 1070-1079 (2018).

    Article  CAS  Google Scholar 

  33. P. Li, Z. Liu, et al., “Investigation on the low-temperature oxidation of light oil for safely enhancing oil recovery at high temperatures and pressures,” Energy, 200, 117546 (2020).

    Article  CAS  Google Scholar 

  34. X. Zhang, Hao Li, et al. The explosion parameters of methanol under variable pressures and 423 K,” J. Loss Prev. Process. Ind., 64, 104079 (2020).

  35. Z. Luo, C. Wei, et al., “Effects of N2 and CO2 dilution on the explosion behavior of LPG-air mixtures,” J. Hazard. Mater., 403, 123843 (2021).

    Article  CAS  Google Scholar 

  36. D. Wang, T. Ji, et al., “Experimental study and mechanism model on the ignition sensitivity of typical organic dust clouds in O2/N2, O2/Ar and O2/CO2 atmospheres,” J. Hazard. Mater., 412, 125108 (2021).

    Article  CAS  Google Scholar 

  37. A. H. Berger and Y. Wang, “Thermodynamic analysis of post-combustion inertial CO2 extraction system,” Energ. Proc., 114, 7-16 (2017).

    Article  CAS  Google Scholar 

  38. R. Shang, G. Li, et al., “Lower flammability limit of H2/CO/air mixtures with N2 and CO2 dilution at elevated temperatures,” Int. J. Hydrogen Energ., 45(6), 10164-10175 (2020).

    Article  CAS  Google Scholar 

  39. X. Xiong, Z. Lv, et al., “Shock tube evaluation on C2H4 ignition delay differences among N2, Ar, He, CO2 diluent gases,” J. Energ. Inst., 93(4), 1271-1277 (2020).

    Article  CAS  Google Scholar 

  40. D. Wang, C. Ji, et al., “Chemical effects of CO2 dilution on CH4 and H2 spherical flame,” Energy, 185, 316-326 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially sponsored by the National Natural Science Foundation of China (Grant No.52001196) and the Shanghai Key Projects of Soft Science (Grant No.20692193100). The authors would like to thank the editors and reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Kan.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 71–76, November-December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, W., Xue, Z., Zun, Z. et al. Explosive Behavior of CH4/C2H6/C3H8 Mixtures in the SAGD Process with CO2 Fusion Gases in Extra-Heavy Oil Reservoirs. Chem Technol Fuels Oils 57, 963–977 (2022). https://doi.org/10.1007/s10553-022-01334-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-022-01334-2

Keywords

Navigation