Skip to main content
Log in

Identification of Natural Gas Components Using the Support Vector Machine Model

  • INNOVATIVE TECHNOLOGIES OF OIL AND GAS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Identification of natural gas components is vital for the natural gas measurement and determination of the gas flow. The accurate evaluation of the natural gas composition is particularly vital for thermal methods of measurement. The thermal measurement principle is the focus of the current research and development trend of natural gas control technology. Therefore, in this study, we propose a method based on principal component analysis. To eliminate the partial correlation error between the samples and retain maximum information, the dimensionality reduction and pre-classification methods are performed on the data obtained by analyzing the physical parameters of the target natural gas. To reduce the input into the network and ensure recognition efficiency, the new samples are used as the input for the support vector machine. The method can be applied for providing an accurate classification of the existing types of natural gas and obtaining reliable data for thermal metering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. W. X. Leng, H. L. Zhan, L. N. Ge, W. Wang, Y. Ma, K. Zhao, S. Y. Li, and L. Z. Xiao, “Rapidly determinating the principal components of natural gas distilled from shale with terahertz spectroscopy,” Fuel, 159, 84–88 (2015).

    Article  CAS  Google Scholar 

  2. D. Ha, U. Ahmed, H. Pyun, C. J. Lee, K. H. Baek, and C. Han, “Multi-mode operation of principal component analysis with k-nearest neighbor algorithm to monitor compressors for liquefied natural gas mixed refrigerant processes,” Comput. Chem. Eng., 106, 96–105 (2017).

    Article  CAS  Google Scholar 

  3. M. Hassan, A. Bermak, and R. Bayesian, “Inference of gas identification in electronic nose applications by using random matrix theory,” IEEE Sens. J., 16, 2036–2045 (2016).

    Article  CAS  Google Scholar 

  4. Y. Zhang, Y. Zhai, T. Sun, and Z. Cao, “Practical application of a combination of principal component analysis and cluster analysis to evaluate the parameters of layered heterogeneous formations in Dagang oil field,” Chem. Technol. Fuels Oils, 50(6), 525–532 (2015).

    Article  CAS  Google Scholar 

  5. M. A. Akbar, A. A. S. Ali, A. Amira, F. Bensaali, M. Benammar, M. Hassan, and A. Bermak, “An empirical study for PCA and LDA based feature reduction for gas identification,” IEEE Sens. J., 16(14), 5734–5746 (2016).

    Article  Google Scholar 

  6. B. Kamiński, M. Jakubczyk, and P. Szufel, “A framework for sensitivity analysis of decision trees,” Cent. Eur. J. Oper. Res., 26(4), 135–159 (2018).

    Article  Google Scholar 

  7. S. B. Kotsiantis, “Decision trees: a recent overview,” Artif. Intell. Rev., 39, 261–683 (2013).

    Article  Google Scholar 

  8. T. Gao, S. Yin, J. Qiu, H. Gao, and O. Kaynak, “A partial least squares aided intelligent model predictive control approach,” IEEE Trans. Syst. Man Cybern., 48(11), 2013–2021 (2018).

    Article  Google Scholar 

  9. T. Mehmood and B. Ahmed, “The diversity in the applications of partial least squares: an overview,” J. Chemomet., 30(1), 4–17 (2016).

    Article  CAS  Google Scholar 

  10. M. Ghavipour, M. Ghavipour, M. Chitsazan, S. H. Najibi, and S. S. Ghidary, “Experimental study of natural gas hydrates and a novel use of neural network to predict hydrate formation conditions,” Chem. Eng. Res. Des., 91(2), 264–273 (2013).

    Article  CAS  Google Scholar 

  11. J. Junghwan and K. Jinsoo, “Forecasting natural gas prices using wavelets, time series, and artificial neural networks,” PloS One, 10(11), 1–23 (2015).

    Google Scholar 

  12. M. Mesbah, E. Soroush, and M. Rezakazemi, “Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature,” Chin. J. Chem. Eng., 25(9), 1238–1248 (2017).

    Article  CAS  Google Scholar 

  13. S. Esfahani, S. Baselizadeh, and A. Hemmati-Sarapardeh, “On determination of natural gas density: least square support vector machine modeling approach,” J. Nat. Gas Sci. Eng., 22, 348–358 (2015).

    Article  CAS  Google Scholar 

  14. R. S. Lakshmi, A. Sivakumar, G. Rajaram, V. Swaminathan, and K. Kannan, “A novel hypergraph-based feature extraction technique for boiler flue gas components classification using PNN - a computational model for boiler flue gas analysis,” J. Ind. Inform. Integr., 9, 35–44 (2018).

    Google Scholar 

  15. S. Ma, H. Zhang, and G. Yang, “Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation,” Aerospace Sci. Technol., 67, 49–53 (2017).

    Article  Google Scholar 

  16. H. Zhang, X. Luo, J. Bi, G. He, and Z. Li, “Multi-component fractal representation of multi-scale structure of natural gas hydrate-bearing sediments,” J. Nat. Gas Sci. Eng., 60, 144–152 (2018).

    Article  CAS  Google Scholar 

  17. L. Khoshnevisan, F. Hourfar, F. Alhameli, and A. Elkamel, “Combining design of experiments, machine learning, and principal component analysis for predicting energy consumption and product quality of a natural gas processing plant,” Int. J. Energ. Res., 45, 1–14 (2020).

    Google Scholar 

  18. L. J. Cao, K. S. Chua, W. K. Chong, H. P. Leea, and Q. M. Gu, “A comparison of PCA, KPCA, and ICA for dimensionality reduction in support vector machine,” Neurocomput., 55(1-2), 321–336 (2003).

    Article  Google Scholar 

  19. A. Khamparia and B. Pandey, “SVM and PCA based learning feature classification approaches for E-learning system,” Int. J. Web Based Learn. Teach. Technol., 13(2), 32–45 (2018).

    Article  Google Scholar 

  20. A. Bouzalmat, J. Kharroubi, and A. Zarghili, “Comparative study of PCA, ICA, LDA using SVM classifier,” J. Emerg. Technol. Web Intell., 6(1), 64–68 (2014).

    Google Scholar 

  21. J. A. K. Suykens, T. Van Gestel, J. Vandewalle, and B. D. Moor, “A support vector machine formulation to PCA analysis and its kernel version,” IEEE Trans. Neural Netw., 14(2), 447–450 (2003).

    Article  CAS  Google Scholar 

  22. P. Gaspar, J. Carbonell, and J. L. Oliveira, “On the parameter optimization of support vector machines for binary classification,” J. Integr. Bioinform., 9(3), 201 (2012).

  23. M. Chu, X. Liu, R. Gong, and L. Liu, “Multi-class classification method using twin support vector machines with multiinformation for steel surface defects,” Chemometr. Intell. Lab. Syst., 176, 108–118 (2018).

    Article  CAS  Google Scholar 

  24. J. Lever, M. Krzywinski, and N. Altman, “Principal component analysis,” Nat. Methods, 14(7), 641–642 (2017).

    Article  CAS  Google Scholar 

  25. A. E. Curtis, T. A. Smith, B. A. Ziganshin, and J. A. Elefteriades, “The mystery of the Z-score,” Aorta, 4(4), 124–130 (2016).

    Article  Google Scholar 

  26. I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos. Trans. R. Soc. A, 374, 1–6 (2016).

    Article  Google Scholar 

  27. P. Sarothi Roy, C. Ryu, S. K. Dong, and C. S. Park, “Development of a natural gas Methane Number prediction model,” Fuel, 246, 204–211 (2019).

    Article  CAS  Google Scholar 

  28. J. Shlens, “A tutorial on principal component analysis,” Int. J. Rem. Sens., 51(2), 1–12 (2014).

    Google Scholar 

  29. A. Tharwat, “Principal component analysis (PCA): an overview,” Int. J. Appl. Pattern Recogn., 3(3), 197–240 (2016).

    Article  Google Scholar 

  30. M. F. Zhang, Z. S. Ge, T. J. Liu, X. H. Wu, and T. H. Qu, “Modeling of individual HRTFs based on spatial principal component analysis,” IEEE/ACM Trans. Aud. Speech Lang. Proc., 28(1), 1–3 (2020).

    Google Scholar 

  31. L. F. Cai, N. F. Thornhill, S. Kuenzel, and B. C. Pal, “Wide-area monitoring of power systems using principal component analysis and k-nearest neighbor analysis,” IEEE Trans. Power Syst., 33(5), 4913–4923 (2018).

    Article  Google Scholar 

  32. S. Xiao, Z. Lu, and L. Xu, “Multivariate sensitivity analysis based on the direction of eigenspace through principal component analysis,” Reliab. Eng. Syst. Saf., 165(9), 1–10 (2017).

    Article  Google Scholar 

  33. B. M. Sherin and M. H. Supriya, “Selection and parameter optimization of SVM kernel function for underwater target classification,” IEEE Underwater Technol. (UT), 5, 1–5 (2015).

    Google Scholar 

  34. M. Javid and J. Hamidzadeh, “An active multi-class classification using privileged information and belief function,” Int. J. Mach. Learn. Cybern., 11(3), 511–524 (2020).

    Article  CAS  Google Scholar 

  35. L. Demidova, E. Nikulchev, and Y. Sokolova, “The SVM classifier based on the modified particle swarm optimization,” Int. J. Adv. Comput. Sci. Appl., 7(2), 16–24 (2016).

    Google Scholar 

  36. X. Zhou, P. Jiang, and X. Wang, “Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function,” J. Intell. Manuf., 29, 51–67 (2018).

    Article  Google Scholar 

  37. B. S. Ahmed, D. Rabah, and A. Aissa, “Performance of different kernel functions for LS-SVM-Grey Wolf Optimiser to estimate flashover voltage of polluted insulators,” IET Sci. Meas. Technol., 12(6), 739–745 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0519), Artificial Intelligence Key Laboratory of Sichuan Province (2020RYY01), and Sichuan Provincial Key Lab of Process Equipment and Control (GK201801).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuzhong Zheng or Ying Wu.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 4, pp. 109–115, July–August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Peng, T., Xia, C. et al. Identification of Natural Gas Components Using the Support Vector Machine Model. Chem Technol Fuels Oils 57, 713–723 (2021). https://doi.org/10.1007/s10553-021-01297-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01297-w

Keywords

Navigation