Skip to main content
Log in

Synthesis, Physicochemical Properties, and Strength Profile of Hydroprocessing Catalyst Supports Based on Aluminosilicate Halloysite Nanotubes

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Hydroprocessing catalyst supports based on aluminosilicate halloysite nanotubes with various alumina contents were synthesized. Their textural characteristics and acidic properties were investigated. The component composition and strength profile of cylindrical extrudates of the aluminosilicate supports were studied. The influence of the mass content of boehmite used as a binder on the physicochemical properties of the materials was established. The crush strength of the synthesized carriers based on aluminosilicate nanotubes was shown to be comparable or superior to those of industrial analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. V. N. Rogozhnikov, A. V. Kulikov, D. I Potemkin, et al., Catal. Commun., 149, 106198-106203 (2021).

  2. J. N. Stuecker, J. E. Miller, R. E. Ferrizz, et al., Ind. Eng. Chem. Res., 43, 51-55 (2004).

    Article  CAS  Google Scholar 

  3. A. V. Vutolkina, D. F. Makhmutov, A. V. Zanina, et al., Pet. Chem., 58, 528-534 (2018).

    Article  CAS  Google Scholar 

  4. A. P. Glotov, V. D. Stytsenko, M. I. Artemova, et al., Catalysts, 9, 384-396 (2019).

    Article  CAS  Google Scholar 

  5. A. Pimerzin, A. Savinov, A. Vutolkina, et al., Catalysts, 10, 594-610 (2020).

    Article  CAS  Google Scholar 

  6. M. Massaro, G Lazzara, R. Noto, et al., Rend. Lincei, Sci. Fis. Nat., 31,213-221 (2020).

  7. A. P. Glotov, A. V. Stavitskaya, Y. A. Chudakov, et al, Pat. Chem., 58,1221-1226 (2018).

    Article  CAS  Google Scholar 

  8. A. Glotov, A. Stavitskaya, Y. Chudakov. et al., Bull. Chem. Soc. Jpn, 92, 61-69 (2019).

  9. E. Abdullayev and Y. Lvov, J. Mater. Chem. B, 1, 2894-2903 (2013).

    Article  CAS  Google Scholar 

  10. M. I Afokin, E. M. Smirnova, A. V. Starozhitskaya, et al., Chem. Technol. Fuels Oils, 55,682-688 (2020).

  11. V. V. Nedolivko, G O. Zasypalov, Y. A. Chudakov, et al., Russ. Chem. Bull., 69, 260-264 (2020).

  12. A. Stavitskaya, A. Glotov, K. Mazurova, et al., Pure Appl. Chem., 92, 909-918 (2020).

    Article  CAS  Google Scholar 

  13. E. Karakhanov, A. Maximov, A. Zolotukhina, et al., Catalysts, 7, 7-22 (2020).

    Google Scholar 

  14. A. Akopyan, P. Polikarpova, A. Vutolkina, et al., Pure Appl. Chem., 93, 231-241(2021).

    Article  Google Scholar 

  15. R. von Klitzing, D. Stehl, T. Pogrzeba, et al.,.Adv. Mater. Interfaces, 4,1600435-1600443 (2017).

    Article  Google Scholar 

  16. V. Y. Tregubenko, N. V. Vinichenko, V. P. Talzi, et al., Russ. Chem. Bull, 69, 1719-1723 (2020).

    Article  CAS  Google Scholar 

  17. A. Glotov, A. Vutolkina, M. Artemova, et al., Appl. Catal. A, 603, 117764-117777 (2020).

    Article  CAS  Google Scholar 

  18. Y. V. Vatutina, K. A. Nadeina, O. V. Klimov, et al., Catal Today, 1-16 (2020).

  19. V. Y. Tregubenko, I. E. Udras, V.A. Drozdov, et al., Russ. J. Appl. Chem., 84, 9-16 (2011).

    Article  CAS  Google Scholar 

  20. A.A. Lamberov, O. V. Levin, S. R Egorova, et al., Russ. J. Appl. Chem., 76,351-357 (2003).

  21. E. J .W. Verwey, J. Phys. Colloid Chem., 51, 631-636 (1947).

  22. A. Glotov, A. Stavitskaya, A. Novikov, et al., Nanomaterials from Clay Minerals, Elsevier, 2019, pp. 203-256.

  23. N. M. Sanchez-Ballester, G V. Ramesh. T. Tanabe, et al, J. Mater. Chem. A, 3, 6614-6619 (2015).

  24. Y. Feng, X. Zhou, J.-h. Yang, et at, ACS Sustainable Chem. Eng., 8, 2122-2129 (2020).

  25. V. Vinokurov, A. Stavitskaya, A. Glotov, et al., J. Solid State Chem., 268, 182-189 (2018).

    Article  CAS  Google Scholar 

  26. A. Glotov, N. Levshakov, A. Stavitskaya, et al., Chem. Commun., 55, 5507-5510 (2019).

    Article  CAS  Google Scholar 

  27. L. Fu, H. Yang, A. Tang, et al., Nano Res., 10, 2782-2799 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was performed under a Russian Science Foundation grant (Project No. 19-79-10016). We thank M. I. Kanin (Halloysite-Ural Ltd.) and K. A. Cherednichenko [I. M. Gubkin RSU of Oil and Gas (NRU)]. The work was performed in the Laboratory of Functional Alluminosilicate Nanomaterials (Yu. M L’vov, Director) established in the framework of P220 work (Megagrant Competition).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Glotov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 30 — 36, March—April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demikhova, N.R., Poplavskii, A.V., Reshetina, M.V. et al. Synthesis, Physicochemical Properties, and Strength Profile of Hydroprocessing Catalyst Supports Based on Aluminosilicate Halloysite Nanotubes. Chem Technol Fuels Oils 57, 250–258 (2021). https://doi.org/10.1007/s10553-021-01245-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-021-01245-8

Keywords

Navigation