Skip to main content
Log in

Optimization of the Process for Absorbing Carbon Dioxide from Flue Gases

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The kinetics of carbon dioxide absorption from flue gases were studied. A mathematical modelwas developed to control the temperature of unsteady turbulent flows and the absorption with homogeneous combustion. The influence of various hydrodynamic and physiochemical factors on carbon dioxide absorption from flue gases using DEA as the absorbent was also determined. The developed mathematical model was used to optimize carbon dioxide absorption from flue gases. As a result, the optimal technological regime of the process was found. The mathematical model enabled the absorption to be optimized and decreased the carbon dioxide concentration in flue gases from 1.2-2.6 to 0.011-0.014%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. S. Y. Choi, S. C. Nam, Y. I. Yoon, et al., Ind. Eng. Chem. Res., 53, No. 37, 14451-14461 (2014).

    Article  CAS  Google Scholar 

  2. G. K. Lavrenchenko and A. V. Kopytin, Tekh. Gazy, No. 1, 40-51 (2013).

    Google Scholar 

  3. L. R. Zayatdynova, “Absorption of carbon dioxide from flue gases in hollow cyclone apparatuses,” Candidate Dissertation in Technical Sciences, Kazan, 2009.

    Google Scholar 

  4. F. A. Chowdhury, H. Yamada, Y. Matsuzaki, et al., Energy Procedia, 63, No. 1, 572-579 (2014).

    Google Scholar 

  5. M. Mofarahia, Y. Khojastehb, H. Khaledib, et al., Ind. Eng. Chem. Res., 53, No. 37, 14451-14461 (2014).

    Article  Google Scholar 

  6. A. Raksajati, M. T. Ho, and D. E. Wiley, Ind. Eng. Chem. Res., 52, No. 47, 16887-16901 (2013).

    Article  CAS  Google Scholar 

  7. M. Mofarahi and Y. Khojastehb, Energy, 33, No. 8, 1311-1309 (2008).

    Article  CAS  Google Scholar 

  8. M. Mofarahia and M. Hadipour, Chem. Thermodyn., 112, 1-6 (2017).

    Article  Google Scholar 

  9. Z. Dechen, F. Mengxiang, L. Zhong, et al. Energy Fuels, 26, 147-153 (2012).

    Article  Google Scholar 

  10. H. Gao, Z. Wu, H. Liu, et al., Energy Fuels, 31, No. 12, 13883-13891 (2017).

    Google Scholar 

  11. J. Mei, Y. Li, L. Ping, and X. Guo, Adv. Mater. Res., 781-784, 2201-2204 (2013).

    Article  Google Scholar 

  12. A. Wilk, S. Wieclan, D. Spiewak, et al., Chem. Process Eng., 36, No. 1, 49-57 (2015).

    Article  CAS  Google Scholar 

  13. J. Salazari, U. Diwekar, K. Jobacke, et al., Energy Procedia, 37, 257-264 (2013).

    Article  Google Scholar 

  14. A. Hussian, H. Ljaz, and L. Peter, Int. J. Energy Clean Environ., 8, 257-273 (2015).

    Google Scholar 

  15. M. Rahimi and M. Mohseni, Korean J. Chem. Eng., 25, No. 3, 395-401 (2008).

    Article  CAS  Google Scholar 

  16. K.-S. Hwang, S.-W. Park, et al., No. 8, 1570-1575 (2010).

    Google Scholar 

  17. K. J. Oh, B. M. Min, S. S. Kim, et al., Korean J. Chem. Eng.,28, No 8, 1574-1760 (2011).

    Article  Google Scholar 

  18. M. K. Kang, S. B. Jeon, M. H. Lee, et al., Korean J. Chem. Eng., 30, No. 6, 1171-1180 (2013).

    Article  CAS  Google Scholar 

  19. H. Kierzkoweka-Pawlak and A. Chacuk, Korean J. Chem. Eng., 29, No. 6, 705-715 (2012).

    Google Scholar 

  20. D. Asendrych, P. Niegodajew, and S. Drobinak, Chem. Process Eng., 34, No 2, 269-282 (2013).

    Article  CAS  Google Scholar 

  21. A. V. Kopytin, A. I. Pyatnichko, G. K. Lavrenchenko, et al., Tekh. Gazy, No. 1, 25-30 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Yusubov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 3, pp. 26-28, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusubov, F.V., Mansurov, E.F. Optimization of the Process for Absorbing Carbon Dioxide from Flue Gases. Chem Technol Fuels Oils 56, 357–362 (2020). https://doi.org/10.1007/s10553-020-01146-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-020-01146-2

Keywords

Navigation