Skip to main content

Advertisement

Log in

Hydrovisbreaking of Mazut Heavy Oil on Inert Packing with Cellular Structure

  • TECHNOLOGY
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The non-catalytic hydrovisbreaking of straight-run mazut residue in an upflow reactor filled with inert turbulizer-packing having a cellular structure and a free volume of about 65% was investigated. Feedstock conversion of 55.1 % was obtained under moderate conditions for such a process (temperature 450°C, hydrogen pressure 5 MPa). The conversion of the non-volatile residue, boiling above 540°C, amounted to 90 % with 96 % demetallization and up to 76% conversion of asphaltenes and tars.. The main product of the hydrovisbreaking process was a kerosene—gasoil fraction with a yield of 43.6%. The distillate products of hydrovisbreaking were similar in quality to the distillates of a slow coking process, except for the lower sulfur content and the complete absence of silicon. The unconverted residue obtained after removal of the light distillates at atmospheric pressure had low viscosity and a low pour point. It can be used as feedstock in hydro purification for marine fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Global Energy Statistical Yearbook 2019, Crude oil production. https://yearbook. enerdata. net/crude-oillworld-production-statitistics. html, 2020 ().

  2. D. Davudov, R. G. Moghanloo, J. Petrol. Sci. Eng., 156, 623-632 (2017).

    CAS  Google Scholar 

  3. Kh. Kh. Akhmadova, Z. A. Abdulmedgidova, Kh. M. Kadiev, et al, Nejlegazovoe Delo, 2,103-113 (2011).

    Google Scholar 

  4. A. S. Bakshi, I. H. Lutz, Oil Gas Journal, 85, 84-87 (1987).

    CAS  Google Scholar 

  5. H. Tominaga, S. Itoh, M. Yashiro, Bulletin of the Japan Petroleum Institute, 19, 50-55 (1977).

    Article  CAS  Google Scholar 

  6. E. M. Manapov, A. F. Ishkil’din, A. F. Akhmetov, Chem. Tech. Fuels Oil, 33, 251-253 (1997).

    Article  Google Scholar 

  7. R. Galiasso, J. A. Salazar, R. Blanco, et al, J. Jpn. Petrol. Inst., 28, 54-62 (1985).

    Article  CAS  Google Scholar 

  8. International maritime organization, Sulphur 2020 - cutting sulphur oxide emissions. http://www. imo. org/en/MediaCentre/HotTopics/Pages/Sulphur (2020). aspx, 2020 (accessed 22 April, 2020).

  9. M. J. Kaiser, A. de Klerk, J. H. Gary, et al., Petroleum Refining: Technology, Economics, and Markets, sixth ed, CRC Press, Boca Raton (2019).

    Book  Google Scholar 

  10. M. F. Menoufy, H. S. Ahmed, M. A. Betiha, et al, Fuel, 119, 106-110 (2014).

    Article  CAS  Google Scholar 

  11. J. Ancheyta, Modeling and Simulation of Catalytic Reactors for Petroleum Refining, John Wiley & Sons Inc., NJ (2011), pp. 43-44.

    Book  Google Scholar 

  12. L. O. Aleman-Vazquez, P. Torres-Mancera, J. Ancheyta, et al. Energ. Fuel, 30, 9050-9060 (2016).

    Article  CAS  Google Scholar 

  13. US Patent 9243193.

  14. J. G Speight, Sci. Iran, 19, 569-573 (2019).

    Article  Google Scholar 

  15. R. N. Magomedov, A. Z. Popova, T. A. Maryutina, et al, Pet. Chem., 55, 423-443 (2015).

    Article  CAS  Google Scholar 

  16. M. -G Yang, I. Nakamura, K. Fujimoto, Catal. Today, 43, 273-280 (1998).

    Article  CAS  Google Scholar 

  17. Y. Miki, J. Catal., 83, 371-383 (1983).

    Article  CAS  Google Scholar 

  18. US Patent 4005006.

  19. RF Patent 2377224.

  20. R. R. Vezirov, Chem. Technol. Fuels Oils, 46, 367-374 (2011).

    Article  CAS  Google Scholar 

  21. V. B. Koptenarmusov, A. L. Katkov, E. I. Malov, et al, Nefteperera. Neftekhim, 3, 7-15 (2017).

    Google Scholar 

  22. RF Patent 7427350.

  23. A. Del Bianco, G. Garuti, C. Pirovano, et al, Fuel, 74, 756-760 (1995).

    Article  Google Scholar 

  24. M. B. Vermeire, Everything you need to know about marine fuels, published by Chevron Global Marine Products (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Boldushevskii.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 3, pp. 9 — 13, May — June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldushevskii, R.E., Yurmukhametova, R.F., Antonov, S.A. et al. Hydrovisbreaking of Mazut Heavy Oil on Inert Packing with Cellular Structure. Chem Technol Fuels Oils 56, 333–340 (2020). https://doi.org/10.1007/s10553-020-01142-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-020-01142-6

Key words

Navigation