Skip to main content
Log in

A Method for Estimating Equivalent Shear Rate in Flow Field of Crude Oil Production

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Turbulent shear is a common flow characteristic of crude oil production. The shearing effect simulation is still a big challenge for the study of oil-water emulsion and multiphase flow. In this paper, based on the physical description of the shearing flow field and numerical simulation of the flow field characteristics, we established a method for estimating the equivalent shear rate in the well bore and well head areas, considering the change of the watercut and gas-liquid ratio parameters of the crude oil. The simulation results indicate that the watercut has little effect on the equivalent shear rate, and under the same watercut, the equivalent shear rate increases with the gas-liquid ratio. When the gas-liquid ratio increased from 240:1 to 430:1, the equivalent shear rate at the well bore and well head areas increased 84% and 76% respectively, with the watercut of 80%. The results of this study contribute to a theoretical understanding of oil-water emulsion behavior simulation of the multiphase flow characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. M. Spiecker, K. L. Gawrys, C. B. Trail, et al., Colloids Surf. A Physicochem. Eng. Aspects, 220, No. 1-3, 9-27 (2003).

    Article  CAS  Google Scholar 

  2. S. F. Wong, J. S. Lim and S. S. Dol, J. Pet. Sci. Eng., 135, 498-504 (2015).

    Article  CAS  Google Scholar 

  3. Z. Wang, X. Lin, Z. Rui, et al., Energies, 10, 721 (2017).

    Article  Google Scholar 

  4. Y. Liu and G. Chen, Inform. Sci., 120, 13-21 (1999).

    Article  Google Scholar 

  5. J. X. Li, Y. Liu, D. Wu, et al., Pet. Sci. Technol., 31(4), 399-407 (2013).

    Article  CAS  Google Scholar 

  6. Y. Liu, Z. Wang, X. Zhuge, et al., Pet. Sci. Technol., 32(4), 462-469 (2014).

    Article  CAS  Google Scholar 

  7. Z. Wang, X. Lin, T. Yu, et al., J. Disper Sci. Technol., https://doi.org/10.1080/01932691.2018.1478303 (2018).

    Article  Google Scholar 

  8. E. Pensini, D. Harbottle, F. Yang, et al., Energy Fuels, 28, 6760-6771 (2014).

    Article  CAS  Google Scholar 

  9. H. Schubert and H. Armbroster, Chem. Ing. Tech., 32(1), 14-28 (1992).

    Google Scholar 

  10. G. Tryggvason, B. Bunner, A, Esmaeeli, et al., J. Comput. Phys., 169(2), 708-759 (2001).

  11. H. Q. Zhang and Cem Sarica, SPE J., 16(3), 692-697 (2011).

  12. M. A. Abdulwahid, H. J. Kareem and M. A. Almudhaffar, WSEAS Trans. Fluid Mech. 12, 131-140 (2017).

    CAS  Google Scholar 

  13. Y. Liu, J. Li, Z. Wang, et al., Environ. Earth Sci., 73, 5891-5904 (2015).

    Article  Google Scholar 

  14. J. Zhu, H. Zhu, Z. Wang, et al., Exp. Therm. Fluid Sci., 98, 95-111 (2018).

    Article  CAS  Google Scholar 

  15. H. Zhu, J. Zhu, J. Zhang, et al., Presented at ASME International Mechanical Engineering Congress and Exposition, Tampa, Florida, USA (2017).

  16. M. Bousmina, A. Ait-Kadi and J. B. Faisant, J. Rheol., 43, 415 (1999).

    Article  CAS  Google Scholar 

  17. Y. Liu, Appl. Math. Comput., 217, 5866-5869 (2011).

    Google Scholar 

Download references

Acknowledgments

This work presented in this paper was financially supported by PetroChina Innovation Foundation (2019D-5007-0501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 73 — 77, January — February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhao, X., Wang, Z. et al. A Method for Estimating Equivalent Shear Rate in Flow Field of Crude Oil Production. Chem Technol Fuels Oils 56, 115–123 (2020). https://doi.org/10.1007/s10553-020-01117-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-020-01117-7

Keywords

Navigation