Skip to main content

Advertisement

Log in

Phase Change Materials in Energy: Current State of Research and Potential Applications

  • REVIEWS
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Recent research on phase change materials promising to reduce energy losses in industrial and domestic heating/air-conditioning systems is reviewed. In particular, the challenges q fphase change material applications such as an encapsulation strategy for active ingredients, the stability of the obtained phase change materials, and emerging corrosion complications are discussed. Moreover, phase change materials could be employed in refrigerators to increase the efficiency and in storage facilities to reduce evaporative losses of fuels and industrial liquid products. Promising areas for using these materials are highlighted. Ways of solving possible problems are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S. Bilgen Energy Rev., 38, 890-902 (2014).

  2. M. Asif and T. Muneer, Renewable Sustainable Energy Rev., 11, No. 7, 1388-1413 (2007).

    Article  Google Scholar 

  3. V. Siva Reddy et al., Renewable Sustainable Energy Rev., 27, 258-273 (2013).

    Article  Google Scholar 

  4. E. M. Shchukina et al., Chem. Soc. Rev., 47, No. 11, 4156-4175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. V. D. Aleksandrov et al., Vestn. Donetsk. Akad. Avtomobil Transporta, 34-41 (2015).

  6. M. Kenisarin and K. Mahkamov, Renewable Sustainable Energy Rev., 55, 371-398 (2016).

    Article  Google Scholar 

  7. H. Akeiber et al., Renewable Sustainable Energy Rev., 60, 1470-1497 (2016).

    Article  Google Scholar 

  8. I. Dincer, S. Dost, and X. Li, Int. J. Energy Res., 21, No. 12, 1157-1171 (1997).

    Article  CAS  Google Scholar 

  9. A. H. Abedin, Open Renewable Energy J., 4, No. 1, 42-46 (2011).

    Article  Google Scholar 

  10. S. D. Sharma and K. Sagan, Int. J. Green Energy, 2, No. 1, 1-56 (2005).

    Article  CAS  Google Scholar 

  11. S. A. Mohamed et al., Renewable Sustainable Energy Rev., 70,1072-1089 (2017).

    Article  CAS  Google Scholar 

  12. C. Veerakumar and A. Sreekumar, Int. J. Refrig., 67, 271-289 (2016).

    Article  Google Scholar 

  13. K. Du et al., Appl. Energy, 220, 242-273 (2018).

    Article  CAS  Google Scholar 

  14. A. Sharma et al., Renewable Sustainable Energy Rev., 13, No. 2, 318-345 (2009).

    Article  CAS  Google Scholar 

  15. Z. Liu and D. D. Chung, Thermochim. Acta, 366, No. 2,135-147 (2001).

    Article  CAS  Google Scholar 

  16. L. F. Caber et al., Appl. Therm. Eng., 23, No. 13,1697-1704 (2003).

    Article  CAS  Google Scholar 

  17. K. Nagano et al., Appl. Therm. Eng., 23, No. 2, 229-241(2003).

    Article  CAS  Google Scholar 

  18. H. W. Ryu et al., Sol. Energy Mater. Sol. Cells, 27, No. 2, 161-172 (1992).

    Article  CAS  Google Scholar 

  19. M. Hadjieva, R Stoykov, and T. Filipova, Renewable Energy, 19, No. 1-2, 111-115 (2000).

    Article  CAS  Google Scholar 

  20. H. Kimura and J. Kai, Energy Convers. Manage., 28, No. 3,197-200 (1988).

    Article  CAS  Google Scholar 

  21. K. Nagano et al., Appl Therm. Eng., 24, No. 2-3, 221-232 (2004).

    Article  CAS  Google Scholar 

  22. G Li et al., Sol. Energy Mater. Sol. Cells, 126, 51-55 (2014).

    Article  CAS  Google Scholar 

  23. G. A. Lane, Int. J. Ambient Energy, 1, No. 3,155-168 (1980).

    Article  Google Scholar 

  24. P. Kauranen, K. Peippo, and P. D. Lund, Sol. Energy, 46, No. 5, 275-278 (1991).

    Article  CAS  Google Scholar 

  25. J. Lao, W. Li, and L. Weng, Energy Build., 43, No. 1, 207-210 (2011).

    Article  Google Scholar 

  26. A. Karaipekli and A. Sari, Renewable Energy, 33, No. 12, 2599-2605 (2008).

    Article  CAS  Google Scholar 

  27. D. W. Hawes, D. Feldman, and D. Banu, Energy Build., 20, No. 1,77-86 (1993).

    Article  Google Scholar 

  28. A. Skala, D. Bnddhi, and R. L Sawhney, Renewable Energy, 33, No. 12, 2606-2614 (2008).

    Article  CAS  Google Scholar 

  29. D. Feldman, M. M. Shapiro, and D. Banu, Sol. Energy Mater., 13, No. 1, 1-10 (1986).

    Article  CAS  Google Scholar 

  30. A. Lazaro et al., Meas. Sci. Technol., 17, No. 8, 2168-2174 (2006).

    Article  CAS  Google Scholar 

  31. P. Zhang, Z. W. Ma, and K. Z. Wang, Renewable Sustainable Energy Rev., 14, No. 2, 598-614 (2010).

    Article  CAS  Google Scholar 

  32. V. N. Kuryakov, P. G De Sanctis Lucentini, and D. D. Ivanova, IOP. Ser : Mater. Sci. Eng., 347, 012034(2018).

    Google Scholar 

  33. C. Alkan, Thenmochim. Acta, 451, No. 1-2,126-130 (2006).

    Article  CAS  Google Scholar 

  34. H. Oyama et al., Fluid Phase Equilib., 234, No. 1-2, 131-135 (2005).

    Article  CAS  Google Scholar 

  35. H. Nakayama, Bull. Chem. Soc. Jpn., 55, No. 2, 389-393 (1982).

    Article  CAS  Google Scholar 

  36. T. V. Rodionova et al., J. Inclusion Phenorn. Macrocyclic Chem., 61, No. 1-2, 107-111 (2008).

    Article  CAS  Google Scholar 

  37. T. V. Rodionova et al., J. Phys. Chem. B, 121, No. 18, 4900-4908 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. L. Fournaison et al., Ind. Eng. Chem. Res., 43, No. 20, 6521-6526 (2004).

    Article  CAS  Google Scholar 

  39. M. Pons et al., Energy, 161,1291-1299 (2018).

    Article  CAS  Google Scholar 

  40. A. Abhat, Sol. Energy, 30, No. 4, 313-332 (1983).

    Article  CAS  Google Scholar 

  41. B. Cardenas and N. Leîn, Renewable Sustainable Energy Rev., 27, 724-737 (2013).

    Article  CAS  Google Scholar 

  42. M. K. Rathod and J. Banerjee, Renewable Sustainable Energy Rev., 18, 246-258 (2013).

    Article  CAS  Google Scholar 

  43. P. B. Salunkhe and P. S. Shembekar, Renewable Sustainable Energy Rev., 16, No. 8, 5603-5616 (2012).

    Article  CAS  Google Scholar 

  44. T. E. Alam et al.,Appl. Energy, 154, 92-101(2015).

    Article  CAS  Google Scholar 

  45. D. Platte et al., Macromol Mater. Eng., 298, No. 1, 67-77 (2013).

    Article  CAS  Google Scholar 

  46. J. Huang et al., Thenmochim. Acta, 557, 1-6 (2013).

    Article  CAS  Google Scholar 

  47. M. Graham et al., J. Mater. Chem. A, 4, No. 43, 16906-16912 (2016).

    Article  CAS  Google Scholar 

  48. Z. Zheng et al., ACS Nano, 10, No. 4, 4695-4703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Z. Theng et al., ACS Nano,11, No. 1, 721-729 (2017).

    Google Scholar 

  50. X. Zhu and D. Shchnkin, Adv. Eng. Mater, 20, No. 11,1-8 (2018).

    Article  CAS  Google Scholar 

  51. W. Cui et al., Renewable Energy, 99, 1029-1037 (2016).

    Article  CAS  Google Scholar 

  52. B. Sandnes and J. Rekstad, Sol. Energy, 80, No. 5, 616-625 (2006).

    Article  CAS  Google Scholar 

  53. G. A. Lane, Sol. Energy Mater. Sot Cells, 27, No. 2, 135-160 (1992).

    Article  CAS  Google Scholar 

  54. P. Moreno et al., Appt Energy, 125, 238-245 (2014).

    Article  CAS  Google Scholar 

  55. A. J. Farrell, B. Norton, and D. M. Kennedy, J. Mater. Process. Technol., 175, No. 1-3, 198-205 (2006).

    Article  CAS  Google Scholar 

  56. L. F. Cabeza et al., Werkst. Korros., 52, No. 2, 140-146 (2001).

    Article  CAS  Google Scholar 

  57. C. Barreneche et al., Therntochim. Acta, 553, 23-26 (2013).

    Article  CAS  Google Scholar 

  58. A. Hasan et al.. Energy Convers. Manage., 81, 322-329 (2014).

    Article  CAS  Google Scholar 

  59. Z. Thou et al, Renewable Sustainable Energy Rev., 48, 692-703 (2015).

    Article  CAS  Google Scholar 

  60. M. Kenisarin and K. Mahkamov, Renewable Sustainable Energy Rev.,11, No. 9, 1913-1965 (2007).

    Article  CAS  Google Scholar 

  61. S. M. Shalaby, M. A. Bek, and A. A. El-Sebaii, Renewable Sustainable Energy Rev., 33, 110-116 (2014).

    Article  CAS  Google Scholar 

  62. T. Ma et al., Renewable Sustainable Energy Rev., 43, 1273-1284 (2015).

    Article  Google Scholar 

  63. S. Seddegh et al.. Renewable Sustainable Energy Rev., 49, 517-533 (2015).

    Article  Google Scholar 

  64. J. M. Belman-Flores et al.. Renewable Sustainable Energy Rev., 51, 955-968 (2015).

    Article  Google Scholar 

  65. V. A. A. Raj and R. Velraj. Renewable Sustainable Energy Rev., 14, No. 9, 2819-2829 (2010).

    Article  CAS  Google Scholar 

  66. P. Devaux and M. M. Farid, Appl. Energy, 191, 593-602 (2017).

    Article  Google Scholar 

  67. P. Zhang and Z. W. Ma, Renewable Sustainable Energy Rev., 16, No. 7, 5021-5058 (2012).

    Article  CAS  Google Scholar 

  68. W. Cheng et al., Energy, 36, No. 10, 5797-5804 (2011).

    Article  CAS  Google Scholar 

  69. W. Cheng and X. Yuan, Energy, 59, 265-276 (2013).

    Article  Google Scholar 

  70. M. Liu, W. Saman, and F. Bruno, Appl. Energy, 92, 336-342 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was sponsored by a grant from the Russian Science Foundation (Project No. 19-79-30091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Semenov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 51— 56, November — December. 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhalkin, D.D., Semenov, A.P., Novikov, A.A. et al. Phase Change Materials in Energy: Current State of Research and Potential Applications. Chem Technol Fuels Oils 55, 733–741 (2020). https://doi.org/10.1007/s10553-020-01089-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-020-01089-8

Keywords

Navigation