Skip to main content
Log in

Acetylene Solubility in High-Energy-Density Fuels Enhanced by Amines and Scrambled Cages

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

High-energy-density (HED) fuels are widely used in aerospace engines bit suffer front slow trance and incomplete combustion. A proposed solution to this problem is dissolution of a flammable small-molecule additive, a g., acetylene, in the fuel. The solubility of acetylene in HED fuels JP-10 and QC at 298.15 K and pressure from 0 to 200 kPa was studied. The molar concentration of acetylene in JP-10 and QC fuels or a pressure of 100 kPa reached 0.60 and 0.75%, respectively. Studies of the dissolution of acetylene in the presence of Et3N and scrambled cages (1, 2, and 5 mass%) showed that such additives could increase significantly the solubility of acetylene in the fuel. The research results are of practical interest for improving the efficiency of HED fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Zhang, L. Pan, L. Wang, and J. -J. Zou, Chem. Eng. Sci., 2017; DOI: https://doi.org/10.1016/j.ces.2017.11.044.

  2. G. R. Wilson, T. Edwards, E. Corporan, and R. L. Freerks, Energy Fuels, 27, 962 (2013).

  3. H. S. Chung, C. S. H. Chen, R. A. Kremer, J. R. Bonito., and G W. Burdette, Energy Fuels, 13, 641(1999).

  4. X. Hui, K. Kumar, C.-J. Sung, and T. Edwards, Fuel, 98,176 (2012).

  5. L. Wang, J.-J. Zou, X. Zhang, and L. Wang, Fuel, 91,164 (2012).

  6. J.-J. Zou, Z. Xiong, X. Zhang, G Liu, L. Wang, and Z. Mi, Ind. Eng. Chem. Res., 46, 4415 (2007).

  7. T. Ma, R. Feng, J.-J. Zou, X. Zhang, and L. Wang. Ind. Eng. Chem. Res., 52, 2486 (2013).

  8. L. Wang, J.-J. Zou, X. Zhang, and L. Wang, Entry, Fuels, 25, 1342 (2011).

  9. J.-J. Zou, X. Zhang, J. Kong, and L. Wang, Fuel, 87, 3655 (2008).

  10. Y. Li, J.-J. Zou, X. Zhang, L. Wang, and Z. Mi, Fuel, 89, 2522 (2010).

  11. R. A. Yetter, G A. Risha, and S. F. Son, Proc. Combust. Inst., 32, 1819 (2009).

  12. A. L. Corcoran, V. K. Hoffmann, and E. L. Dreier., Combust. Flame, 160, 718 (2013).

  13. R. N. Mehta, M. Chakrabony, and P. A. Parikh, Fuel, 120, 91 (2014).

  14. X.-T.-F. E, Y. Zhang, J.-J. Zou, L. Wang, and X. Zhang, Ind. Eng. Chem. Res., 53, 12312 (2014).

  15. X.-T.-F. E, Y. Zhang, J.-J. Zou, X. Mang, and L. Wang, Mater. Lett., 118, 196 (2014).

  16. T. Shimizu, A. D. Abid, G Poskrebyshev, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, B. Van Devener, S. L. Anderson, and S. Williams, Combust. Flame, 157, 421 (2010).

  17. A. M. Starik, P. S. Kuleshov, A. S. Shatipov, and N. S. Titova, Energy Fuels, 28, 6579 (2014).

  18. B. V. Devener, S. L. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, and S. Williams, J. Phys. Chem. C., 113, No. 48, 20632 (2009).

    Article  Google Scholar 

  19. V. V. Smirnov, S. A. Kostritsa, V. D. Kobtsev, N. S. Titova, and A. M. Starik, Combust. Flame, 162, 3554 (2015).

  20. C. Allen, G Mittal, C.-J. Sung, E. Toulson, and T. Lee, Proc. Combust. Inst., 33, 3367 (2011).

  21. Y. Guo, Y. Yang, W. Fang, and S. Hu, Appl. Catal, A, 469, 213 (2014).

  22. B. V. Devener and S. L. Anderson, Energy Fuels, 20,1886 (2006).

  23. D. L. Hilden and R. F. Stebar, Int. J. Energy Res., 3, 59 (1979).

  24. G Jibelian, R. R. Mitchell, and E. S. Overland, J. Appl. Physiol.: Respir., Environ. Exercise Physiol, 51, 1357 (1981).

  25. J. Palgunadi, S. Y. Hong, J. K. Lee, H. Lee, S. D. Lee, M. Cheong, and H. S. Kim, J. Phys. Chem. B.,115, 1067 (2011).

  26. T. L.Hu, H. Wang, B. Li, R. Krishna, H. Wu, W. Zhou, Y. Zhao, Y. Han, X. Wang, W. Zhu, Z. Yao, S. Xiang, and B. Chen, Nat. Commun., 6, 7328 (2015).

  27. N. Giri, M. G. Del Popolo, G Melaugh, R. L. Greenaway, K. Ratzke, T. Koschine, L. Pison, M. F. Gomes, A. I. Cooper, and S. L. James, Nature, 527, 216 (2015).

  28. H. Pearce, Zeolite Molecular Sieves-Structure, Chemistry and Use, Wiley, New York, 1974.

  29. L. Pan, R. Feng. H. Peng, X.-T.-F. E, J.-J. Zou, L. Wang, and X. Zhang, PSC Adv., 4, 50998 (2014).

  30. D. M. Rosie and E. F. Barry, J. Chromatogr. Sci.,11, 237 (1973).

  31. H. Gu and B. Yan, The Applied Handbook of Gas Chromatography, Chemical Industry Press, Beijing, 1990.

  32. J. L. Anthony, E. J. Maginn, and J. F. Brennecke, J. Phys. Chem. B., 106, 7315 (2002).

  33. A. D. McNaught and A. Wilkinson, IUPAC Compendium of Chemical Terminology, Encyclopedic Dictionary of Polymers, 2006.

  34. X. Li, M. Hou, B. Han, X. Wang, and L. Zou, J. Chem. Eng. Data, 53, 548 (2008).

Download references

Acknowledgments

The authors appreciate support from the National Natural Science Foundation of China (111462119, 21476168).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 48 – 52, September – October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu-tian-feng, E., Zhang, L., Pan, L. et al. Acetylene Solubility in High-Energy-Density Fuels Enhanced by Amines and Scrambled Cages. Chem Technol Fuels Oils 54, 599–605 (2018). https://doi.org/10.1007/s10553-018-0965-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-018-0965-0

Keywords

Navigation