Skip to main content
Log in

Explosion Properties of LPG—Air Mixtures in a Cylindrical Vessel with Top-Center Ignition

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A new safety-valve construction was developed and tested by studying combined dynamic and static loads between powered supports and surrounding rocks. The gas—air mixture explosion conditions were modeled to test the dynamic load. Explosion properties of the gas-air mixtures (including maximum explosion pressure, maximum rise rate of explosion pressure, explosion rime, deflagration index) were investigated experimentally at room temperature in a cylindrical chamber with top-center ignition. The results showed that the maximum explosion pressure, maximum rate of pressure rise, and deflagration index were linearly correlated to the initial pressure. On the other hand, the explosion time depended mainly on the ratio of gases and only in a limited range on the initial pressure. The experimentally measured explosion properties of LPG—air mixtures could be used in practice to study safe operation of safety valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. G. Qian, X. X. Miao, F. L. He, et al., J. China Coal Soc., 21, No. 1, 40-44 (1996) [in Chinese].

  2. Z. S Lian, Y. C. Guo, D. Y. Wang, et al., "A large flow safety valve test device," CN Patent, ZL201510190240.7. 2017.

  3. T. Mogi and S. Horiguchi, J Hazard. Mater, 164, No. 1, 114-119 (2009).

    Article  CAS  Google Scholar 

  4. A. S. Huzayyin, H. A. Moneib, M. S. Shehatta, et al., Fuel, 87, No. 1, 39-57 (2008).

    Article  CAS  Google Scholar 

  5. M. Mita, V. Giurcan, D. Razus, et al., Energy Fuels, 26, No. 8, 4840-4848 (2012).

  6. D. Razus, V. Brinzea, M. Minn, et al., J Hazard. Mater, 165, No. 1-3, 1248-1252 (2009).

    Article  CAS  Google Scholar 

  7. Y. Koshiba, T. Nishida, N. Morita, et al., Process Saf. Environ. Prot., 98, 11-15 (2015).

  8. D. Razus, C. Movileanu, V. Brinzea, et al., J Hazard. Mater., 135, No. 1-3, 58-65 (2006).

    Article  CAS  Google Scholar 

  9. D. Razus, C. Movileanu, and D. Oancea, J Hazard. Mater., 139, No. 1, 1-8 (2007).

    Article  CAS  Google Scholar 

  10. B. Zhang and H. D. Ng, Fuel, 157, 56-63 (2015).

  11. D. Razus, V. Brinzea, M. Mitu, et al., Rev. Chim. (Bucharest, Rom.), 60, No. 8, 750-754 (2009).

    CAS  Google Scholar 

  12. D. Razus, C. Movileanu, V. Brinzea, et al., Fuel, S6. No. 12-13, 1865-1872 (2007).

    Article  Google Scholar 

  13. Z. L. Zhang, B. Q. Lin, G. M. Li, et al., Combust. Set Technol., 185, No. 3, 514-531 (2013).

  14. D. Razus, V. Brinzea, M. Mitu et al., J Hazard. Mater., 190, No. 1-3, 891-896 (2011).

    Article  CAS  Google Scholar 

  15. D. Razus, V. Brinzea, M. Mitu, et al., J Hazard. Mater., 174, No. 1-3, 548-555 (2010).

    Article  CAS  Google Scholar 

  16. Q. Q. Li, Y. Cheng, and Z. H. Huang, J. Loss Prey. Process Ind., 37, 91-100 (2015).

  17. Q. Q. Li, Y. Cheng, W. Jin, et al., Fuel, 161, 78-86 (2015).

  18. Q. Zhang, W. Li, and H. M. Liang, Saf. Sci., 50, No. 9, 1715-1721 (2012).

    Article  Google Scholar 

  19. Q. Zhang, W. Li, Y. Huang, et al., Process Saf. Prog., 31, No. 2, 148-151 (2012).

  20. Y. D. Jo and D. A. Crowl, Process Saf. Prog., 29, No. 3, 216-223 (2010).

    Article  CAS  Google Scholar 

  21. C. L. Tang, Z. H. Huang, C. Jin, et al., Int. J. Hydrogen Energy, 34, No. 1, 554-561 (2009).

    Article  CAS  Google Scholar 

  22. F. Cammarota, A. D. Benedetto, P. Russo, et al., Process Sat Environ. Prot., 88, No. 5, 341-349 (2010).

    CAS  Google Scholar 

  23. R. K. Vishwakarma, V. Ranjan, and J. Kumar, J. Loss Prevent. Process Ind., 31, No. 31, 82-81 (2014).

    Article  CAS  Google Scholar 

  24. C. L. Tang, S. Zhang, Z. B. Si, et al., J Hazard. Mater., 278, 520-528 (2014).

  25. Q. Z. Li, B. Q. Lin, H. M. Dai, et al., Powder Technol, 229,222-228 (2012).

  26. M. Mitua and E. Brandes, Fuel, 158, 217-223 (2015).

  27. C. Movileanu, V. Gosa, and D. Razus, J Hazard. Mater., 235-236, No. 2, 108-115 (2012).

    Article  CAS  Google Scholar 

  28. D. Li, Q. Zhang, Q. J. Ma, et al, Int. J. Hydrogen Energy, 40, No. 28, 8761-8768 (2015).

    Article  CAS  Google Scholar 

  29. T. S. Lee, J. Y. Sung, and D. J. Park, Fire Saf J., 49, No. 49, 62-66 (2012).

    Article  CAS  Google Scholar 

  30. K. Lee and J. Ryu, Fuel, 84, No. 9, 1116-1127 (2005).

    Article  CAS  Google Scholar 

  31. F. S. Li, G X. Li, and Z. Y. Sun, Energies, 10, No. 7, 915 (2017).

  32. D. P. Mishra and A. Rahman, Fuel, 82, No. 32, 863-866 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Foundation for Scientific and Technological Projects for the Coal-Mining Industry of Shanxi Province, PRC (No. MJ2014-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zisheng Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xiang, H., Lian, Z. et al. Explosion Properties of LPG—Air Mixtures in a Cylindrical Vessel with Top-Center Ignition. Chem Technol Fuels Oils 54, 591–598 (2018). https://doi.org/10.1007/s10553-018-0964-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-018-0964-1

Keywords

Navigation