Skip to main content

Catalytic Aquathermolysis of High-Viscosity Oil Using Iron, Cobalt, and Copper Tallates

The results of a study of the composition of active forms of the catalyst formed upon degradation of the precursor, based on the results of physical modeling of a sample of high-viscosity oil having high asphaltene and resin contents, are presented. Oil-soluble iron, cobalt, and copper tallates were used as the objects of the study. The composition of the separated powder of the active form of the catalyst was determined by X-ray diffraction analysis, and the catalyst particle size was determined by scanning electron microscopy. The SARA (saturate, aromatic, resin and asphaltene) analysis data revealed a marked decrease in high-molecular-weight oil components due to thermocatalytic cracking. The basic transformation mechanism is breakdown of the high-molecular-weight compounds along the sulfur-bearing bonds, as indicated by elemental CHNS (carbon, hydrogen, nitrogen and sulfur) analysis data. It is shown that the cobalt- and copper-based oil-soluble complexes turn are converted to sulfide forms and the iron-based complex is converted to the oxide form. According to the results of scanning electron microscopic analysis of the catalyst, the particle size is about 60 nm.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. F. J. Hein, Nat. Resources Res., 15, 67-84 (2006).

    CAS  Article  Google Scholar 

  2. I. J. Mokrys, R. M. Butler, In: Production Operations Symposium, Oklahoma (1993), pp. 409-424.

  3. O. Muraza, Journal of Analytical and Applied Pyrolysis, 114, 1-10 (2015).

    CAS  Article  Google Scholar 

  4. R. Kh. Muslimov, G. V. Romanov, G. P. Kayukova, et al., FEN, Kazan (2012), 396 pp.

  5. S. Desouky. A. Al Sabagh, M. Betiha, et al., Inter J Chem Mater Sci. Eng., 7, 1-6 (2013).

    Google Scholar 

  6. O. Muraza, A. Galadima, Fuel, 157, 219-231 (2015).

    CAS  Article  Google Scholar 

  7. T. N. Yusupova, Y. M. Ganeeva, G. V. Romanov, et al., Petroleum Chemistry, 57(3), 198-202 (2017).

    CAS  Article  Google Scholar 

  8. S. Desouky, A. Alsabagh, M. Betiha, et al., International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering, 7, No. 8, 286-291 (2013).

    Google Scholar 

  9. P. D. Clark, M. J. Kirk, Energy Fuels (1994), Vol. 8.

  10. S. K. Maity, J. Ancheyta, G. Marroquin, Energy & Fuels, 24, 2809-2816 (2010).

    CAS  Article  Google Scholar 

  11. Jiqian Wang, Lai Liu, Longli Zhang, et al., Energy Fuels, 28 (12), 7440-7447 (2014).

    CAS  Article  Google Scholar 

  12. G. P. Kayukova, L. E. Foss, D. A. Feoktistov, 57, No. 4, 394-402 (2017).

    Google Scholar 

  13. M. A. Varfolomeev, R. N. Nagrimanov, A. A. Samatov, et al., Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(8), 1031-1038 (2016).

    CAS  Article  Google Scholar 

  14. A. V. Vakhin, V. P. Morozov, S. À. Sitnov, et al., Chemistry and Technology of Fuels and Oils, 50(6), 569-578 (2015).

    CAS  Article  Google Scholar 

  15. J. Hou, C. Li, H. Gao, et al., Fuel, 200, 193-198 (2017).

    CAS  Article  Google Scholar 

  16. Yan-Bin Cao, Long-Li Zhang, Dao-Hong Xi., Pet. Sci., 13, 463-475 (2016).

    CAS  Article  Google Scholar 

  17. Fajun Zhao, Jinhao Huang, Mingze Li, et al., J. Chem. Pharm. Res., 7(4), 1370-1377 (2015).

    CAS  Google Scholar 

  18. S. A. Sitnov, D. A. Feoktistov, M. S. Petrovnina, et al., International Journal of Pharmacy and Technology, 8(3), 15074-15080 (2016).

    CAS  Google Scholar 

  19. R. Ren, H. Liu, Y. Chen, et al., Energy and Fuels, 29 (12), 7793-7799 (2015).

    CAS  Article  Google Scholar 

  20. N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, et al., Chemistry and Technology of Fuels and Oils, 4, 30-37 (2014).

    Google Scholar 

  21. L. Jia, A. Alghamdi, F. T. T. Ng, In: Nanocatalysis for Fuels and Chemicals, ACS Symposium Series, American Chemical Society, Washington, DC (2012).

  22. A. N. Cavallaro, G. R. Galliano, R. G. Moore, et al., Journal of Canadian Petroleum Technology, 47, No. 9, 23-31 (2008).

    CAS  Google Scholar 

  23. Y. Chen, Y. Wang, J. Lu, et al., Fuel, 88, 1426-1434 (2009).

    CAS  Article  Google Scholar 

  24. Y. Hamedi Shokrlu, T. Babadagli, Transportation and interaction of nano and micro size metal particles injected to improve thermal recovery of heavy-oil. Proceedings, SPE Annual Technical Conference and Exhibition.

  25. N. Panariti, A. Del Bianco, G. Del Piero, et al., Applied Catalysis A: General, 204, 203-213 (2000).

    CAS  Article  Google Scholar 

Download references

The work was carried out with a subsidy provided in terms of state support for the Kazan Federal University for the purpose of raising its competitiveness among leading worldwide scientific education centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vakhin.

Additional information

Translated Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 62 – 66, November – December, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feoktistov, D.A., Kayukova, G.P., Vakhin, A.V. et al. Catalytic Aquathermolysis of High-Viscosity Oil Using Iron, Cobalt, and Copper Tallates. Chem Technol Fuels Oils 53, 905–912 (2018). https://doi.org/10.1007/s10553-018-0880-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-018-0880-4

Keywords

  • high-viscosity oil
  • catalyst
  • catalyst precursor
  • aquathermolysis
  • X-ray diffraction analysis
  • scanning electron microscopy