Skip to main content
Log in

Polymer–Methanol Combines Inhibition of Gas Hydrate Formation

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

A study was carried out on combined inhibition by a solution containing 0.5% polymer kinetic inhibitor (KI) + 10.0% methanol as a thermodynamic inhibitor (TI) in the formation of methane hydrate (Class I) and the hydrate of 95.66 mol. % CH4 + 4.34 mol.% C3H8 (methanepropane mixture) (Class II). This combined inhibition was studied by an isothermal method and a method entailing cooling at a constant rate using a GHA350 autoclave. Methane was shown to have an adverse effect on the inhibiting properties of the polymer KI both relative to formation of methane hydrate and hydrates of C1 C3 hydrocarbons. The loss of inhibition by the polymer KI in the presence of methanol is expressed as the decrease in the extent of supercooling attainable in the system without adsorption of the hydrate-forming gas (1.52.5°C in comparison with the system without TI). The induction time is shown to depend on the extent of supercooling in the system during inhibition of formation of the Class I and Class II hydrates by the solution containing 0.5% KI + 10.0% TI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. A. Istomin and V. G. Kvon, Prevention and Elimination of Gas Hydrates in Gas Production Systems [in Russian], IRTs Gazprom, Moscow (2004).

    Google Scholar 

  2. H. J. Ng, C. J. Chen, and T. Saeterstad, Fluid Phase Equilibria, 36, 99106 (1987).

    Article  CAS  Google Scholar 

  3. K. Y. Song and R. Kobayashi, Fluid Phase Equilibria, 47(2), 295308 (1989).

    Article  CAS  Google Scholar 

  4. H. Haghighi, et al., Fluid Phase Equilibria, 276(1), 2430 (2009).

    Article  CAS  Google Scholar 

  5. J. P. Lederhos, et al., Chemical Engineering Science, 51(8), 12211229 (1996).

    Article  CAS  Google Scholar 

  6. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd edition, CRC Press/Francis & Taylor, Boca Raton, FL (2008).

    Google Scholar 

  7. M. A. Kelland, Energy & Fuels, 20, 825-847 (2006).

    Article  CAS  Google Scholar 

  8. A. Perrin, O. M. Musa, and J. W. Steed, Chemical Society Reviews, 42(5), 19962015 (2013).

    Article  CAS  Google Scholar 

  9. B. Kvamme, T. Kuznetsova, and K. Aasoldsen, Journal of Molecular Graphics and Modelling, 23(6), 524536 (2005).

    Article  CAS  Google Scholar 

  10. B. J. Anderson, et al, Journal of the American Chemical Society, 127(50), 1785217862 (2005).

    Article  CAS  Google Scholar 

  11. A. P. Semenov, V. I. Medvedev, P. A. Gushchin, et al., Khimiya i Tekhnologiya Topliv i Masel, 51, No. 6, 2429 (2015).

    Google Scholar 

  12. J. A. Moore, in: Offshore Technology Conference, Houston, TX, May 47, 2009, OTC 19869.

  13. C. Xiao and H. Adidharma, Chemical Engineering Science, 64(7), 15221527 (2009).

    Article  CAS  Google Scholar 

  14. C. Xiao, N. Wibisono, and H. Adidharma, Chemical Engineering Science, 65(10), 30803087 (2010).

    Article  CAS  Google Scholar 

  15. A. R. Richard and H. Adidharma, Chemical Engineering Science, 87, 270276 (2013).

    Article  CAS  Google Scholar 

  16. K. S. Kim, J. W. Kang, and S. P. Kang, Chemical Communications, 47(22), 63416343 (2011).

    Article  CAS  Google Scholar 

  17. S. Park, et al., Energy & Fuels, 27(11), 65816586 (2013).

    Article  CAS  Google Scholar 

  18. E. D. Sloan, et al., Industrial & Engineering Chemistry Research, 37(8), 31243132 (1998).

    Article  CAS  Google Scholar 

  19. M. Cha, et al., Chemical Engineering Science, 99, 184190 (2013).

    Article  CAS  Google Scholar 

  20. B. Tohidi, et al., Energy & Fuels, 29(12), 82548260 (2013).

    Article  Google Scholar 

  21. J. Kim, The Journal of Physical Chemistry B, 118(30), 90659075 (2014).

    Article  CAS  Google Scholar 

  22. A. P. Semenov, V. I. Medvedev, P. A. Gushchin, et al., Khimiya i Tekhnologiya Topliv i Masel, 52, No. 1, 2933 (2016).

    Google Scholar 

  23. H. Ajiro, et al., Energy & Fuels, 24(12), 64006410 (2010).

    Article  CAS  Google Scholar 

  24. P. C. Chua, et al., Energy & Fuels, 26(8), 49614967 (2012).

    Article  CAS  Google Scholar 

  25. P. C. Chua, et al., Energy & Fuels, 27(1), 183188 (2012).

    Article  Google Scholar 

  26. J. M. Cohen, P. F. Wolf, and W. D. Young, Energy & Fuels, 12(2), 216218 (1998).

    Article  CAS  Google Scholar 

  27. T. M. Svartaas, M. A. Kelland, and L. Dybvik, Annals of the New York Academy of Sciences, 912(1), 744752 (2000).

    Article  CAS  Google Scholar 

  28. V. I. Medvedev, et al., Chemistry and Technology of Fuels and Oils, 51(5), 470479 (2015).

    Article  CAS  Google Scholar 

  29. E. D. Sloan, The Hydrate Prediction Program Csmhyd 2.0 (1998).

  30. P. Gayet, C. Dicharry, G. Marion, et al., ChemicalEngineeringScience, 60, 57515758 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Semenov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 29 – 33, March – April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.P., Medvedev, V.I., Gushchin, P.A. et al. Polymer–Methanol Combines Inhibition of Gas Hydrate Formation. Chem Technol Fuels Oils 52, 162–170 (2016). https://doi.org/10.1007/s10553-016-0686-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-016-0686-1

Key words

Navigation