Chemistry and Technology of Fuels and Oils

, Volume 51, Issue 6, pp 719–727 | Cite as

Physicochemical Properties of Water—Residual-Fuel-Oil Emulsions

  • Z. A. Antonova
  • Yu. V. Maksimuk
  • V. S. Kruk
  • V. N. Kursevich
  • V. V. Fes’ko
Article

The density, kinematic viscosity, sulfur content, water content, and heat of combustion of greater than 50 samples of residual fuel oils, water—residual-fuel-oil emulsions, and spent oils are determined experimentally. The viscosity and higher heat of combustion of water—residual-fuel-oil emulsions are shown to depend on the water content. The optimal water content in water—residual-fuel-oil emulsions is determined using numerical viscosity values. The ranges over which the density and higher heat of combustion of the test samples vary are determined and analyzed. Variants for calculating the heat of combustion of oil products are studied. Equations for calculating the higher and lower heats of combustion of heavy boiler oils, including water—residual-fuel-oil emulsions, are proposed.

Keywords

residual fuel oil water—residual-fuel-oil emulsion heat of combustion viscosity density 

References

  1. 1.
    V. M. Ivanov, Fuel Emulsions [in Russian], Izd. Akad. Nauk SSSR, Moscow, 1962, 216 pp.Google Scholar
  2. 2.
    V. I. Kormilitsyn, V. V. Radaev, and A. I. Dudko, Teploenergoeffektivnye Tekhnol., No. 2, 47-50 (2006).Google Scholar
  3. 3.
    V. R. Vedruchenko, V. V. Krainov, and M. V. Koksharov, Prom. Energ., No. 2, 32-39 (2012).Google Scholar
  4. 4.
    S. P. Batuev, Novosti Teplosnabzheniya, No. 12, 29-34 (2008).Google Scholar
  5. 5.
    S. V. Gridin and A. L. Khokhlova, Prom. Teplotekh., 32, No. 3, 59-63 (2010).Google Scholar
  6. 6.
    V. M. Ivanov, B. V. Smetannikov, and Yu. I. Kulakov, Khim. Tekhnol. Topl. Masel, No. 11, 59-61 (1980).Google Scholar
  7. 7.
    S. V. Geller, Industriya, No. 2, 53-55 (2012).Google Scholar
  8. 8.
    V. A. Koryagin, Combustion of Water—Fuel Emulsions and Reduction of Hazardous Releases [in Russian], Nedra, St. Petersburg, 1995, 304 pp.Google Scholar
  9. 9.
    A. S. Shchuchkin and A. M. Danilov, Tekhnol. Nefti Gaza, No. 5, 12-14 (2004).Google Scholar
  10. 10.
    V. D. Yusufova, A. L. Garzanov, S. G. Kasparov, et al., Prom. Energ., No. 7, 34-36 (1984).Google Scholar
  11. 11.
    A. K. Kharitonov, N. V. Golub2, A. I. Popov, et al., Energetik, No. 2, 11 (1983).Google Scholar
  12. 12.
    M. E. Butovskii and Yu. S. Burdochkin, Zheleznodorozhn. Transp., No. 1, 22-25 (1998).Google Scholar
  13. 13.
    A. N. Volikov, Prom. Energ., No. 10, 48-50 (1999).Google Scholar
  14. 14.
    K. V. Tarantsev and A. V. Korosteleva, Ekol. Prom-st. Ross., February, 14-17 (2013).Google Scholar
  15. 15.
    A. Chavez, M. Ramirez, E. Medina, et al., Heat Mass Transfer, 47, 1051-1063 (2011).CrossRefGoogle Scholar
  16. 16.
    Yu. V. Maksimuk, A. F. Buglak, V. S. Kruk, et al., Khim. Tekhnol. Topl. Masel, No. 2, 12-15 (2013).Google Scholar
  17. 17.
    Yu. V. Maksimuk, A. F. Buglak, V. S. Kruk, et al., Khim. Tekhnol. Topl. Masel, No. 3, 9-12 (2013).Google Scholar
  18. 18.
    V. T. Bugai, A. V. Oreshenkov, and O. A. Burmistrov, Khim. Tekhnol. Topl. Masel, No. 5, 16-17 (1998).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Z. A. Antonova
    • 1
  • Yu. V. Maksimuk
    • 1
  • V. S. Kruk
    • 1
  • V. N. Kursevich
    • 1
  • V. V. Fes’ko
    • 1
  1. 1.Belarus State University, Scientific Research Institute of Physicochemical ProblemsMinskBelorussia

Personalised recommendations