Skip to main content

Kinetic Inhibition of Hydrate Formation by Polymeric Reagents: Effect of Pressure and Structure of Gas Hydrates

Kinetic inhibition of formation of methane hydrate (CS-I) and methane-propane (CH4 + C3H8 in 95.66 + 4.34 mole %) hydrate (CS-II) by the polymeric reagents Luvicap 55W and Luvicap EG is studied in the 40-120 bar pressure range. Cooling at the constant rate of 1°C/hr was used to assess the effectiveness of kinetic inhibition. It is shown that the kinetic hydrate formation inhibitors (KHI) Luvicap 55W and Luvicap EG in identical proportion of 5000 ppm are capable of inhibiting methane hydrate formation at a supercooling temperature twice as low (6-7°C) as in the case of hydrates of methane-propane mixture (13-14°C). In the presence of KHI, hydrates appear in the system in the form of visually discernible opacity of the initially transparent aqueous solution at a temperature that is 1-2°C higher than the temperature at the point of deviation of the P(T) curve from the straight line, i.e., they appear earlier than appearance of signs of gas absorption. Formation of such trace quantities of hydrate do not cause a marked deviation of the P(T) curve from the straight line and can be discerned only by more sensitive physicochemical methods. The inhibiting properties of Luvicap EG and Luvicap 55W with respect to methane hydrate differ insignificantly, but the former is more effective in inhibiting crystal growth. The experimental data indicate that Luvicap 55W is more effective than Luvicap EG in inhibiting nucleation and growth of methane-propane hydrate crystals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. M. A. Kelland, Energ. Fuel., 20, 825–847 (2006)

    CAS  Article  Google Scholar 

  2. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed., CRC Press/Taylor & Francis, Boca Raton, FL (2008).

    Google Scholar 

  3. M. A. Kelland, In: Advances in Materials Science Research, Ed. M. C. Wytherst, Vol. 8, Chapter 5, Nova Science Publishers Inc., New York (2011).

  4. M. Arjmandi, et al., Chem. Eng. Sci., 60, No. 5, 1313–1321 (2005).

    CAS  Article  Google Scholar 

  5. J. M. Cohen, P. F. Wolf, and W. D. Young, Energ. Fuel., 12, No. 2, 216–218 (1998).

    CAS  Article  Google Scholar 

  6. E. D. Sloan, et al., Ind. Eng. Chem. Res., 37, No. 8, 3124–3132 (1998).

    CAS  Article  Google Scholar 

  7. T. M. Svartaas, M. A. Kelland, and L. Dybvik, Ann. NY Acad. Sci., 912, No. 1, 744–752 (2000).

    CAS  Article  Google Scholar 

  8. H. Ajiro, et al., Energ. Fuel., 24, No. 12, 6400–6410 (2010).

    CAS  Article  Google Scholar 

  9. P. C. Chua, et al., Energ. Fuel., 26, No. 8, 4961–4967 (2012).

    CAS  Article  Google Scholar 

  10. P. C. Chua, et al., Energ. Fuel., 27, No. 1, 183–188 (2012).

    Article  Google Scholar 

  11. US Patent 5874660.

  12. L. D. Villano, et al., Energ. Fuel., 23, No. 7, 3665–3673 (2009).

    Article  Google Scholar 

  13. L. D. Villano, R. Kommedal, and M. A. Kelland, Energ. Fuel., 22, No. 5, 3143–3149 (2008).

    Article  Google Scholar 

  14. C. Duchateau, et al., Energ. Fuel., 24, No. 1, 616–623 (2009).

    Article  Google Scholar 

  15. L. D. Villano and M. A. Kelland, Chem. Eng. Sci., 65, No. 19, 5366–5372 (2010).

    Article  Google Scholar 

  16. A. Lone, M. Sc. Diss., University of Stavanger, Stavanger (2011).

  17. L. D. Villano and M. A. Kelland, Chem. Eng. Sci., 66, No. 9, 1973–1985 (2011).

    Article  Google Scholar 

  18. C. Duchateau, et al., Eng. Sci., 71, 220–225 (2012).

    CAS  Article  Google Scholar 

  19. C. Nakarit, M. Sc. Diss., University of Stavanger, Stavanger (2012).

  20. M. Cha, et al., J. Phys. Chem. A, 117, No. 51, 13988–13995 (2013).

    CAS  Article  Google Scholar 

  21. N. Daraboina, C. Malmos, and N. Von Solms, Fuel, 108, 749–757 (2013).

    CAS  Article  Google Scholar 

  22. M. F. Mady and M. A. Kelland, Energ. Fuel., 27, No. 9, 5175–5181 (2013).

    CAS  Google Scholar 

  23. R. Wu, et al., Energ. Fuel., 27, No. 5, 2548–2554 (2013).

    CAS  Article  Google Scholar 

  24. J. Kim, et al., J. Phys. Chem. B, 118, No. 30, 9065–9075 (2014).

    CAS  Article  Google Scholar 

  25. N. Daraboina, S. Pachitsas, and N. von Solms, Fuel, 139, 554–560 (2015).

    CAS  Article  Google Scholar 

  26. M. A. Kelland, et al., Energ. Fuel., 29, No. 8, 4941–4946 (2015).

    CAS  Article  Google Scholar 

  27. C. D. Magnusson, et al., Energ. Fuel., 29, No. 4, 2336–2341 (2015).

    CAS  Article  Google Scholar 

  28. F. T. Reyes, et al., Energ. Fuel., 29, No. 2, 695–701 (2015).

    CAS  Google Scholar 

  29. R. Larsen, C. A. Knight, and E. D. Sloan, Fluid Phase Equilibr., 150, 353–360 (1998).

    Article  Google Scholar 

  30. H. Bruusgaard, L. D. Lessard, and P. Servio, Cryst. Growth Des., 9, No. 7, 3014–3023 (2009).

    CAS  Article  Google Scholar 

  31. L. Jensen, et al., Ind. Eng. Chem. Res., 49, No. 4, 1486–1492 (2010).

    CAS  Article  Google Scholar 

  32. C. M. Perfeldt, et al., Energ. Fuel., 28, No. 6, 3666–3672 (2014).

    CAS  Article  Google Scholar 

  33. V. I. Medvedev, P. A. Gushchin, V. S. Yakushev, et al., Khim. Tekhnol. Topl. Masel, 5, 30–35 (2015).

    Google Scholar 

  34. A. P. Semenov, et al., Chem. Eng. Sci., 137, 161–169 (2015).

    Article  Google Scholar 

  35. P. Gayet, C. Dicharry, G. Marion, et al., Chem. Eng. Sci., 60, 5751–5758 (2005).

    CAS  Article  Google Scholar 

  36. E. D. Sloan, The Hydrate Prediction Program CSMHYD 2.0 (1998).

Download references

The work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (project 14.574.21.0052, identifier RFMEFI57414X0052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Semenov.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 80 – 85, November – December, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.P., Medvedev, V.I., Gushchin, P.A. et al. Kinetic Inhibition of Hydrate Formation by Polymeric Reagents: Effect of Pressure and Structure of Gas Hydrates. Chem Technol Fuels Oils 51, 679–687 (2016). https://doi.org/10.1007/s10553-016-0658-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-016-0658-5

Keywords

  • kinetic inhibition
  • kinetic inhibitors of hydrate formation
  • methane hydrate
  • methane-propane hydrate
  • degree of supercooling