Skip to main content
Log in

Application of Thermal Investigation Methods in Developing Heavy-Oil Production Technologies

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The feasibility of applying thermal analysis to study of oil–containing rocks and organic matter is reviewed. Using heavy crudes from the Ashal’cha and Mordovo-Karmal fields, the potential for analysis of the effectiveness of iron-containing precursors of aquathermolysis catalysts is demonstrated with use of data derived from thermal analysis. The thermal effects detected in the presence of the catalyst precursor, as compared with the original sample, reflect decomposition of the catalyst precursor and degradation processes for the components of the crude oil activated by the catalyst. It is shown that use of thermal analysis is feasible for preliminary selection or optimization of catalyst compositions for in-situ upgrading of crude oils, taking into account the activity of the catalyst relative to certain components of the crude in a specific temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Kh. Muslimov, G. V. Romanov, G. P. Kayukova et al., Neft. Gaz. Novatsii, No. 2, 21–29 (2012).

  2. R. S. Khisamov, N. S. Gatiyatullin, I. E. Shargorodskii et al., Geology and Exploitation of Natural-Bitumen Reservoirs in the Tatarstan Republic [in Russian], Fen, Kazan’ (2007).

    Google Scholar 

  3. A. K. Kurochkin and S. P. Toptygin, Sfera Neftegaz, No. 1, 92–96 (2010).

  4. B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev et al., Khim. Tekhnol. Topl. Masel, No. 3, 6–8 (2014).

  5. S. K. Maity, J. Ancheyata, and G. Marroquin, Energy & Fuels, 24, 2809–2816 (2010).

    Article  CAS  Google Scholar 

  6. J. B. Hyne, J. W. Greidanus, J. D. Tyrer et al., In: Second International Conference “The Future of Heavy Crude and Tar Sands,” Caracas, Venezuela, 7–17 February 1982, McGraw Hill, New York (1984), pp. 404–411.

  7. B. Tisso and D. Velte, Formation and Propagation of Crude Oil [Russian translation], Mir, Moscow (1981).

    Google Scholar 

  8. V. N. Melenevskii, Methodological Recommendations for Use of the Pyrolytic Method in Organic Geochemistry [in Russian], SNIIGTiMS, Novosibirsk (1985).

    Google Scholar 

  9. A. É. Kontorovich, V. N. Melenevskii, A. S. Fomichev et al., Geol. Neft. Gaza, No. 12, 36–41 (1986).

  10. K. E. Peters, AAPG Bull., 70, 318–329 (1986).

    Google Scholar 

  11. N. V. Lopatin and T. P. Emets, Pyrolysis in Oil-Gas Geochemistry [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  12. N. V. Lopatin and T. P. Emets, Geokhim., No. 12, 1751–1762 (1988).

  13. K. E. Peters, C. C. Walters, and J. M. Moldowan, The Biomarker Guide, Cambridge University Press, New York (2005).

    Google Scholar 

  14. J. Espitalie, F. Marquis, and J. Barsony, Geochemical Logging by the Oil Show Analyzer, Butterworth, London (1984).

    Google Scholar 

  15. E. A. Glebovskaya, Modeling of Catagenesis Processes of Organic Matter and Oil and Gas Formation [in Russian], Nedra, Leningrad (1984).

    Google Scholar 

  16. N. A. Nechitailo, Khim. Tekhnol. Topl. Masel, No. 4, 40–43 (1988).

  17. E. AS. Boiko, Complex Thermal Analysis of Solid Organic Fuels [in Russian], Krasnoyarsk (2006).

  18. N. A. Savitskaya, Thermal Methods of Investigating Oil- and Gas-Generation Characteristics of Organic Matter in Rock [in Russian], VNIGRI, Leningrad (1988)..

    Google Scholar 

  19. T. N. Yuspova, L. M. Petrova, Yu. M. Ganeeva et al., Neftekhim., No. 4, 254–259 (1999).

  20. T. N. Yusupova, Yu. M. Ganeeva, D. A. Khalikova et al., Neftekhim., 52, No. 1, 17–24 (2012).

    Google Scholar 

  21. G. N. Gordadze, Thermolysis of Organic Matter in Oil- and Gas-Prospecting Geochemistry [in Russian], Izdatel’stvo IGi RGI, Moscow (2002).

    Google Scholar 

  22. T. N. Usupova, L. M. Petrova, R. Z. Mukhametshin et al., J. Term. Anal. Calorim., 55, 99–107 (1999).

    Article  Google Scholar 

  23. A. M. Kiyamova, G. P. Kayukova, G. V. Romanov et al., In: Materials Presented at the International Scientific-Practical Conference “Oil Refining “2008” [in Russian], TUP INKhP PB, Ufa (2008), pp. 3235.

    Google Scholar 

  24. A. M. Kiyamova, G. P. Kayukova, V. I. Morozov et al., Tekhnol. Neft. Gaza, No. 1, 40–47 (2007).

  25. A. M. Kiyamova, G. P. Kayukova, Yu. M. Ganeeva et al., In: Materials Presented at the International Scientific Practical Conference “Critical Problems of the Latter Stage of Exploitation of Oil and Gas Producing Regions [in Russian], FEN, Kazan’ (2006), pp. 236–241.

    Google Scholar 

  26. G. P. Kayukova, A. M. Kiyamova, I. P. Kosachev et al., In: Collection of Materials Presented at the Conference “Non-Traditional Hydrocarbon Reserves: Propagation, Genesis, Predictions, Prospects for Development [in Russian], GEOS, Moscow (2013), pp. 91–94.

    Google Scholar 

  27. N. A. Repyakh, Yu. M. Ganeeva, T. N. Yusupova et al., Vestn. Kazan. Tekhnol. Univ., 15, No. 6, 170–173 (2012).

    Google Scholar 

  28. T. N. Yusupova, L. M. Petrova, Yu. M. Ganeeva et al., Neftekhimiya, No. 4, 254–259 (1999).

  29. D. A. Khalikova, A. Z. Tukhvatullina, Yu. M. Ganeeva et al., Vestn. Kazan. Tekhnol. Univ., No. 5, 349–357 (2009).

  30. Yu. L. Shishkin, I. V. Yazynina, and E. V. Ovchar, Khim. Tekhnol. Topl. Masel, No. 1, 47–50 (2008).

  31. G. P. Kayukova, G. P. Kurbskii, R. K. Gabitova et al., Geokhimiya, No. 12, 1748–1756 (1993).

  32. N. A. Savitskaya, Investigation of Oil- and Gas-Generated Characteristics of Organic Matter in Rock by Thermal Methods [in Russian], VNIGRI, Leningrad (1988), p.103.

    Google Scholar 

  33. Russian Federation Patent No. 2324923.

  34. M. V. Kock, Fuel Proc. Tekhnol., 96, 134–139 (2012).

    Article  Google Scholar 

  35. M. V. Kock, Energy Sources, Part A, 36, 923–928 (2014).

    Article  Google Scholar 

  36. Russian Federation Patent No. 2488101.

  37. Russian Federation Patent No. 2284516.

  38. Russian Federation Patent No. 1718074.

  39. M. M. Rahman and A. Venkataraman, J. Therm. Anal. Calorim., 68, 91–101 (2002).

    Article  CAS  Google Scholar 

  40. A. A. Petrov, Petroleum Hydrocarbons [in Russian], Nauka, Moscow (1984).

    Google Scholar 

Download references

This study was performed through facilities of a subsidiary independent of the Kazan’ Federal University for fulfillment of a government assignment within the sphere of scientific activity.

It was carried out through facilities of a subsidiary isolated within the framework of government support for the Kazan’ Federal University for purposes of improving its competitiveness among the world’s leading scientific and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vakhin.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 75 – 80, November – December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhin, A.V., Morozov, V.P., Sitnov, S.A. et al. Application of Thermal Investigation Methods in Developing Heavy-Oil Production Technologies. Chem Technol Fuels Oils 50, 569–578 (2015). https://doi.org/10.1007/s10553-015-0565-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-015-0565-1

Key words

Navigation