Skip to main content
Log in

Bio-oil synthesis by pyrolysis of cogongrass (Imperata Cylindrica)

  • Current Problems. Alternative Feedstock
  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

We have studied thermal pyrolysis of cogongrass (Imperata cylindrica) at 400°C, 450°C, and 500°C. We have studied the effect of temperature on the yield of solid, liquid, and gaseous pyrolysis products. The maximum yield (33.67%) of liquid product (bio-oil) is obtained at 500°C. The bio-oil contains oxygen-containing compounds with hydroxyl and carboxyl groups: phenol, 2,6-dimethoxyphenol, 2-methoxyphenol, 2-methylphenol, 4-ethyl-2-methoxyphenol, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Wu, S. Zhang, J. Xu and T. Zhu, “The CO2 reduction effects and climate benefit of Beijing 2008 Summer Olympics green practice,” Energy Procedia, 5, 280–296 (April 2011).

    Article  CAS  Google Scholar 

  2. Q. Lu, W-Z. Li, and X-F. Zhu, “Overview of fuel properties of biomass fast pyrolysis oils,” Energy Conversion and Management, 50, 1376–1383 (May 2009).

    Article  CAS  Google Scholar 

  3. H. Li, Q. Xu, H. Xue, and Y. Yan., “Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass,” Renewable Energy, 34, 1–6 (April 2009).

    Article  Google Scholar 

  4. H. S. Heo, H. J. Park, J-H. Yim, J. M. Sohn, J. H. Park, S-S. Kim, C. K. Ryu, J-K. Jeon, and Y-K. Park. “Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens,” Bioresource Technology, 101, No. 10, 3672–3677 (2010).

    Article  CAS  Google Scholar 

  5. K. Promdee, T. Vitidsant, and S. Vanpetch. “Comparative study of some physical and chemical properties of bio-oil from Manila grass and Water hyacinth transformed by pyrolysis process,” International Journal of Chemical Engineering and Applications, 3, No. 1, 72–75 (February 2012).

    Article  CAS  Google Scholar 

  6. A. Pattiya and S. Suttibak “Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit,” Journal of Analytical and Applied Pyrolysis, 95, 227–235 (2012).

    Article  CAS  Google Scholar 

  7. V. Volli and R. K. Singh, “Production of bio-oil from de-oiled cakes by thermal pyrolysis,” Fuel, 96, 579–585 (2012).

    Article  CAS  Google Scholar 

  8. U. Jena, and K. C. Das, “Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae,” Energy & Fuels, 25, 5472–5482 (2011).

    Article  CAS  Google Scholar 

  9. S. Sevgi, and D. Angin, “Pyrolysis of safflower (Charthamus tintorius L.) seed press cake: Part 1. The effect of pyrolysis parameters on the product yields,” Bioresource Technology, 99, 5492–5497 (September 2008).

    Article  Google Scholar 

  10. S. Sevgi and D. Angin, “Pyrolysis of safflower (Charthamus tintorius L.) seed press cake in a fixed-bed reactor: Part 2. Structural characterization of pyrolysis bio-oils,” Bioresource Technology, 99, 5498–5504 (September 2008).

    Article  Google Scholar 

  11. P. Duan and P. E. Savage, “Upgrading of crude algal bio-oil in supercritical water,” Bioresource Technology, 102, 1899–1906 (January 2011).

    Article  CAS  Google Scholar 

  12. L. G. Holm, D. L. Plucknett, J. V. Pancho, and J. P. Herberger, in: The World’s Worst Weeds: Distribution and Biology, The University Press of Hawaii, Honolulu (1977), pp. 609.

  13. N. C. Coile and D. G. Shilling, “Cogongrass Imperata cylindrica (L.) Beauv.: A good grass gone bad!”, Botany Circular No. 28, Florida Department of Agriculture & Consumer Services, Division of Plant Industry (November/December 1993).

  14. C. A. Mullen, A. Charles, and A. Akwasi, “Chemical composition of bio-oils produced by fast pyrolysis of two energy crops,” Energy & Fuels, 22, No. 3, 2104–2109 (April 2008).

    Article  CAS  Google Scholar 

  15. P. M. Mortensen, J-D. Grunwaldt, P. A. Jensen, K. G. Knudsen, and A. D. Jensen, “A review of catalytic upgrading of bio-oil to engine fuels,” Applied Catalysis A: General, 407, Nos. 1-2, 1–19 (August 2011).

    Article  CAS  Google Scholar 

  16. R. Razuan, Q. Chen, N. K. Finney, V. N. Russell, N. V. Sharifi, and J. Swithenbank, “Combustion of oil palm stone in a pilot-scale fluidised bed reactor,” Fuel Processing Technology, 92, 2219–2225 (2011).

    Article  CAS  Google Scholar 

  17. Mei-Kuei Lee, Wen-Tien Tsai, Yi-Lin Tsai, and Sheau-Horng Lin, “Pyrolysis of napier grass in an inductionheating reactor,” Analytical and Applied Pyrolysis, 88, No. 2, 110–116 (July 2010).

    Article  CAS  Google Scholar 

  18. H. Chen, B. Dou, Y. Song, Y. Xu, Y. Zhang, C. Wang, and X. Zhang. “Pyrolysis characteristics of sucrose biomass in a tubular reactor and a thermogravimetric analysis,” Fuel, 95, 425–430 (2012).

    Article  CAS  Google Scholar 

  19. S. Bilgen, S. Keles and K. Kaygusuz, “Calculation of higher and lower heating values and chemical exergy values of liquid products obtained from pyrolysis of hazelnut cupulae,” Energy, 41, 1–6 (2012).

    Article  Google Scholar 

  20. Ying Xu, Tiejun Wang, Longlong Ma, and Guanyi Chen “Upgrading of fast pyrolysis liquid fuel from biomass over Ru/g-Al2O3 catalyst,” Energy conversion and management, 55, 172–177 (2012).

    Article  CAS  Google Scholar 

  21. G. Huminic, A. Huminic, I. Morjan and F. Dumitrache, “Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles,” Int. J. Heat and Mass Transfer, 54, 656–661 (2011).

    Article  CAS  Google Scholar 

  22. Z. Ma, E. Troussard, and J. Van Bokhoven, “Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis,” Applied Catalysis A: General, 423-424, 130–136 (2012).

    Article  Google Scholar 

  23. O. Ioannidou, C. G. Jung, and A. Zabaniotou, “A thermogravimetric model to predict yield product distribution in pyrolysis of agricultural biomass,” Catalysis Today, 167, 129–134 (2011).

    Article  CAS  Google Scholar 

  24. V. Skoulou and A. Zabaniotou, “Fe catalysis for lignocellulosic biomass conversion to fuels and materials via thermochemical processes,” Catalysis Today, 184, 231–242 (2012).

    Google Scholar 

  25. J. A. Conesa and A. Domene, “Biomasses pyrolysis and combustion kinetics through η-th order parallel reactions,” Thermochimica Acta, 523, 176–181 (2011).

    Article  CAS  Google Scholar 

  26. M. P. Robbins, G. Evans, J. Valentine, I. S. Donnison, and G. G. Allison, “New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK,” Progress in Energy and Combustion Science, 38, 138–155 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kittiphop Promdee.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 4, pp. 7 – 9, July – August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Promdee, K., Vitidsant, T. Bio-oil synthesis by pyrolysis of cogongrass (Imperata Cylindrica). Chem Technol Fuels Oils 49, 287–292 (2013). https://doi.org/10.1007/s10553-013-0443-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-013-0443-7

Key words

Navigation