Skip to main content

Upgrading vacuum residuum by combined sonication and treatment with a hydrogen donor

Vacuum residuum was upgraded in an ultrasonic reactor of our own design. We found that during sonication in the absence of a hydrogen donor, the viscosity of the vacuum residuum is reduced by 10.98%; without sonication but in the presence of tetralin, it is reduced by 30.9%; and with combined tetralin treatment and sonication, the viscosity is reduced by 39.27%. The synergistic effect of ultrasound and tetralin results in a product with more stable viscosity, higher percentage of light components, lower density and lower pour point than obtained by separate application of these technologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. S. K. Maity, J. Ancheyta, and G. Marroquin, “Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review,” Energy & Fuels, 24, 2809–2816 (2010).

    Article  CAS  Google Scholar 

  2. Z. Shen, Z. Cao, X. Zhu, and X. Li, “Visbreaking of Chinese oil sand bitumen,” Pet. Sci. Technol., 26, No. 14, 1676–1683 (2008).

    Article  CAS  Google Scholar 

  3. Z.-M. Cheng, Y. Ding, L.-Q. Zhao, P.-Q. Yuan, and W.-K. Yuan, “Effects of supercritical water in vacuum residue upgrading,” Energy & Fuels, 23, 3178–3183 (2009).

    Article  CAS  Google Scholar 

  4. S. Dehkissia, F. Larachi, D. Rodrigue, and E. Chornet, “Characterization of Doba-Chad heavy crude oil in relation with the feasibility of pipeline transportation,” Fuel, 83, No. 16, 2157–2168 (2004).

    Article  CAS  Google Scholar 

  5. J. F. Schabron, A. T. Pauli, J. F. Rovani, and F. P. Miknis, “Predicting coke formation tendencies,” Fuel, 80, No. 10, 1435–1446 (2001).

    Article  CAS  Google Scholar 

  6. F. Martinez-Boza, F. Fernandez-Latorre, and C. Gallegos, “High-pressure viscosity of used motor oil/vacuum residue blends,” Fuel, 88, No. 9, 1595–1601 (2009).

    Article  CAS  Google Scholar 

  7. S. H. Li, C. G. Liu, G. H. Que, and W. J. Liang, “Colloidal structures of vacuum residua and their thermal stability in terms of saturate, aromatic, resin and asphaltene composition,” J. Petrol. Sci. Eng., 22, Nos. 1-3, 37–45 (1999).

    Article  CAS  Google Scholar 

  8. V. T. Minchenya, M. Y. Purets, N. A. Lipkin, and V. L. Solomakho, “Ultrasound-induced decrease in the viscosity of frozen diesel fuel,” Chemistry and Technology of Fuels and Oils, 39, No. 6, 334–338 (2003).

    Article  CAS  Google Scholar 

  9. R. Gopinath, A. K. Dalai, and J. Adjaye, “Effects of ultrasound treatment on the upgradation of heavy gas oil,” Energy & Fuels, 20, No. 1, 271–277 (2006).

    Article  CAS  Google Scholar 

  10. O. Behrend, K. Ax, and H. Schubert, “Influence of continuous phase viscosity on emulsification by ultrasound,” Ultrason. Sonochem., 7, No. 2, 77–85 (2000).

    Article  CAS  Google Scholar 

  11. J. R. Lin and T. F. Yen, “An upgrading process through cavitation and surfactant,” Energy & Fuels, 7, No. 1, 111–118 (1993).

    Article  CAS  Google Scholar 

  12. W. Lauterborn and C. D. Ohl, “Cavitation bubble dynamics,” Ultrason. Sonochem. 4, No. 2, 65–75 (1997).

    Article  CAS  Google Scholar 

  13. K. S. Suslick, J. J. Gawienowski, P. F. Schubert, and H. H. Wang, “Alkane sonochemistry,” J. Phys. Chem., 87, No. 13, 2299–2301 (1983).

    Article  CAS  Google Scholar 

  14. N. Y. Belokon, V. G. Kompaneets, T. M. Stepanova, and L. N. Shabalina, “Visbreaking residues as components of feedstock for paving asphalts,” Chemistry and Technology of Fuels and Oil, 37, No. 6, 388–392 (2001).

    Article  CAS  Google Scholar 

  15. C. Ovalles, E. Filgueiras, A. Morales, C. E. Scott, F. Gonzalez-Gimenez, and B. P. Embaid, “Use of a dispersed iron catalyst for upgrading extra-heavy crude oil using methane as source of hydrogen,” Fuel, 82, No. 8, 887–892 (2003).

    Article  CAS  Google Scholar 

  16. C. Ovalles, C. Vallejos, T. Vasquez, I. Rojas, U. Ehrman, J. L. Benitez, and R. Martinez, “Downhole upgrading of extra-heavy crude oil using hydrogen donors and methane under steam injection conditions,” Pet. Sci. Technol., 21, Nos. 1-2, 255–274 (2003).

    Article  CAS  Google Scholar 

  17. N. Kang, I. Hua, and C. Xiao,”Impacts of sonochemical process variables on number average molecular weight reduction of asphaltene,” Ind. Eng. Chem. Res., 45, No. 15, 5239–5245 (2006).

    Article  CAS  Google Scholar 

  18. Y. J. Liu and H. F. Fan, “The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation,” Energy & Fuels, 16, No. 4, 842–846 (2002).

    Article  CAS  Google Scholar 

  19. Y.-N. Liu, D. Jin, X.-P. Lu, and P.-F. Han, “Study on degradation of dimethoate solution in ultrasonic airlift loop reactor,” Ultrason. Sonochem., 15, No. 5, 755–760 (2008).

    Article  CAS  Google Scholar 

  20. E. Torres-Jimenez, M. S. Jerman, A. Gregorc, I. Lisec, M. Pilar Dorado, and B. Kegl, “Physical and chemical properties of ethanol-diesel fuel blends,” Fuel, 90, No. 2, 795–802 (2011).

    Article  CAS  Google Scholar 

  21. L.-Q. Zhao, Z.-M. Cheng, Y. Ding, P.-Q. Yuan, S.-X. Lu, and W.-K. Yuan, “Experimental study on vacuum residuum upgrading through pyrolysis in supercritical water,” Energy & Fuels, 20, No. 5, 2067–2071 (2006).

    Article  CAS  Google Scholar 

  22. S. A. Hawley, L. W. Kessler, and F. Dunn, “Ultrasonic absorption in aqueous solutions of high-molecularweight polysaccharides,” Journal of the Acoustical Society of America, 38, No. 4, 521–523 (1965).

    Article  CAS  Google Scholar 

  23. K. Brabec and V. Mornstein, “Detection of ultrasonic cavitation based on low-frequency analysis of acoustic signal,” Cent. Eur. J. Biol., 2, No. 2, 213–221 (2007).

    Article  Google Scholar 

  24. J. Wang, Y. Jiang, Z. Zhang, G. Zhao, G. Zhang, T. Ma, and W. Sun, “Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors,” Desalination, 216, Nos. 1-3, 196–208 (2007).

    Article  CAS  Google Scholar 

  25. S. Chitra, K. Paramasivan, P. K. Sinha, and K. B. Lal, “Ultrasonic treatment of liquid waste containing EDTA,” J. Clean. Prod., 12, No. 4, 429–435 (2004).

    Article  Google Scholar 

  26. F. O. Rice and K. F. Herzfeld, “The thermal decomposition of organic compounds from the standpoint of free radicals. VI. The mechanism of some chain reactions,” J. Am. Chem. Soc., 56, No. 2, 284–289 (1934).

    Article  CAS  Google Scholar 

  27. A. C. Sanchez Berna, V. Camacho Moran, E. T. Romero Guzman, and M. Jose Yacaman, “Asphaltene aggregation from vacuum residue and its content of inorganic particles,” Pet. Sci. Technol , 24, No. 9, 1055–1066 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 6, pp. 7 – 12, November – December, 2012.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, Z., Zhang, C., Gu, S. et al. Upgrading vacuum residuum by combined sonication and treatment with a hydrogen donor. Chem Technol Fuels Oils 48, 426–435 (2013). https://doi.org/10.1007/s10553-013-0391-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-013-0391-2

Key words

  • ultrasound
  • vacuum residuum
  • hydrogen donor
  • viscosity reduction
  • upgrading