Skip to main content

Advertisement

Log in

Genetically predicted gut microbiome and risk of oral cancer

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Mounting evidence suggests a possible link between gut microbiome and oral cancer, pointing to some potential modifiable targets for disease prevention. In the present study, Mendelian randomization (MR) was used to explore whether there was a causal link between gut microbiome and oral cancer.

Methods

The single nucleotide polymorphisms (SNPs) significantly associated with gut microbiome were served as instrumental variables. MR analyses were performed using genetic approaches such as inverse variance weighting (IVW), MR Egger and weighted median, with IVW as the primary approach, supplemented by MR Egger and weighted median. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were used to detect the presence of horizontal pleiotropy and identify outlier SNPs.

Results

Causal effect estimates indicated that genetically predicted abundance of Prevotellaceae was associated with higher risk of oral cancer (odds ratio (OR) 1.80, 95% confidence interval (CI) 1.16–2.81, p = 0.009). There was no evidence of notable heterogeneity and horizontal pleiotropy.

Conclusion

Genetically derived estimates suggest that Prevotellaceae may be associated with the risk of oral cancer. Such robust evidence should be given priority in future studies and explore the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on request.

References

  1. Kaur J, Srivastava R, Borse V (2021) Recent advances in point-of-care diagnostics for oral cancer. Biosens Bioelectron 178:112995. https://doi.org/10.1016/j.bios.2021.112995

    Article  CAS  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Giraldi L, Leoncini E, Pastorino R et al (2017) Alcohol and cigarette consumption predict mortality in patients with head and neck cancer: a pooled analysis within the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. Ann Oncol 28(11):2843–2851. https://doi.org/10.1093/annonc/mdx486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCullough MJ, Prasad G, Farah CS (2010) Oral mucosal malignancy and potentially malignant lesions: an update on the epidemiology, risk factors, diagnosis and management. Aust Dent J 55(Suppl 1):61–65. https://doi.org/10.1111/j.1834-7819.2010.01200.x

    Article  PubMed  Google Scholar 

  5. Madera Anaya MV, Franco JV, Merchán-Galvis ÁM et al (2018) Quality assessment of clinical practice guidelines on treatments for oral cancer. Cancer Treat Rev 65:47–53. https://doi.org/10.1016/j.ctrv.2018.03.001

    Article  PubMed  Google Scholar 

  6. Lau A, Li KY, Yang WF et al (2016) Induction chemotherapy for squamous cell carcinomas of the oral cavity: a cumulative meta-analysis. Oral Oncol 61:104–114. https://doi.org/10.1016/j.oraloncology.2016.08.022

    Article  PubMed  Google Scholar 

  7. Korpela K, Helve O, Kolho KL et al (2020) Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183(2):324–334. https://doi.org/10.1016/j.cell.2020.08.047

    Article  CAS  PubMed  Google Scholar 

  8. de Vos WM, Tilg H, Van Hul M et al (2022) Gut microbiome and health: mechanistic insights. Gut 71(5):1020–1032. https://doi.org/10.1136/gutjnl-2021-326789

    Article  CAS  PubMed  Google Scholar 

  9. Gopalakrishnan V, Helmink BA, Spencer CN et al (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580. https://doi.org/10.1016/j.ccell.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen F, Dai X, Zhou CC et al (2022) Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut 71(7):1315–1325. https://doi.org/10.1136/gutjnl-2020-323476

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Misra BB, Liang L et al (2019) Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics 9(14):4101–4114. https://doi.org/10.7150/thno.35186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Temraz S, Nassar F, Nasr R et al (2019) Gut microbiome: a promising biomarker for immunotherapy in colorectal cancer. Int J Mol Sci 20(17):4155. https://doi.org/10.3390/ijms20174155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heshiki Y, Vazquez-Uribe R, Li J et al (2020) Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome 8(1):28. https://doi.org/10.1186/s40168-020-00811-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi KW, Chen CY, Stein MB et al (2019) Assessment of bidirectional relationships between physical activity and depression among adults: a 2-sample Mendelian randomization study. JAMA Psychiat 76(4):399–408. https://doi.org/10.1001/jamapsychiatry.2018.4175

    Article  Google Scholar 

  15. Kurilshikov A, Medina-Gomez C, Bacigalupe R et al (2021) Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 53(2):156–165. https://doi.org/10.1038/s41588-020-00763-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lesseur C, Diergaarde B, Olshan AF et al (2016) Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat Genet 48(12):1544–1550. https://doi.org/10.1038/ng.3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng J, Baird D, Borges MC et al (2017) Recent developments in mendelian randomization studies. Curr Epidemiol Rep 4(4):330–345. https://doi.org/10.1007/s40471-017-0128-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burgess S, Scott RA, Timpson NJ et al (2015) Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 30(7):543–552. https://doi.org/10.1007/s10654-015-0011-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bowden J, Davey Smith G, Haycock PC et al (2016) Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314. https://doi.org/10.1002/gepi.21965

    Article  PubMed  PubMed Central  Google Scholar 

  21. D’souza S, Addepalli V (2018) Preventive measures in oral cancer: an overview. Biomed Pharmacother 107:72–80. https://doi.org/10.1016/j.biopha.2018.07.114

    Article  CAS  PubMed  Google Scholar 

  22. Matson V, Chervin CS, Gajewski TF (2021) Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 160(2):600–163. https://doi.org/10.1053/j.gastro.2020.11.041

    Article  CAS  PubMed  Google Scholar 

  23. Loftus M, Hassouneh SA, Yooseph S (2021) Bacterial community structure alterations within the colorectal cancer gut microbiome. BMC Microbiol 21(1):98. https://doi.org/10.1186/s12866-021-02153-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liao H, Li C, Ai Y et al (2021) Gut microbiome is more stable in males than in females during the development of colorectal cancer. J Appl Microbiol 131(1):435–448. https://doi.org/10.1111/jam.14943

    Article  CAS  PubMed  Google Scholar 

  25. Kadosh E, Snir-Alkalay I, Venkatachalam A et al (2020) The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586(7827):133–138. https://doi.org/10.1038/s41586-020-2541-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Shen J, Shi X et al (2021) Gut microbiome analysis as a predictive marker for the gastric cancer patients. Appl Microbiol Biotechnol 105(2):803–814. https://doi.org/10.1007/s00253-020-11043-7

    Article  CAS  PubMed  Google Scholar 

  27. Sethi V, Kurtom S, Tarique M et al (2018) Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 155(1):33-37.e6. https://doi.org/10.1053/j.gastro.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Tikka C, Manthari RK, Ommati MM et al (2020) Immune disruption occurs through altered gut microbiome and NOD2 in arsenic induced mice: correlation with colon cancer markers. Chemosphere 246:125791. https://doi.org/10.1016/j.chemosphere.2019.125791

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Baruch EN, Youngster I, Ben-Betzalel G et al (2021) Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371(6529):602–609. https://doi.org/10.1126/science.abb5920

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhao Y, Feng Y, Ye Q et al (2022) The oral microbiome in young women at different stages of periodontitis: Prevotella dominant in stage III periodontitis. Front Cell Infect Microbiol 12:1047607. https://doi.org/10.3389/fcimb.2022.1047607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang L, Liu Y, Zheng HJ et al (2020) The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol 9:476. https://doi.org/10.3389/fcimb.2019.00476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Chen G, Wang P et al (2021) Alterations of the oral microbiota profiles in Chinese patient with oral cancer. Front Cell Infect Microbiol 11:780067. https://doi.org/10.3389/fcimb.2021.780067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, D’Souza G, Fakhry C et al (2022) Oral human papillomavirus associated with differences in oral microbiota beta diversity and microbiota abundance. J Infect Dis 226(6):1098–1108. https://doi.org/10.1093/infdis/jiac010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang X, Li C, Cao W et al (2021) Alterations of gastric microbiota in gastric cancer and precancerous stages. Front Cell Infect Microbiol 11:559148. https://doi.org/10.3389/fcimb.2021.559148

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao Q, Yang T, Yan Y et al (2020) Alterations of oral microbiota in Chinese patients with esophageal cancer. Front Cell Infect Microbiol 10:541144. https://doi.org/10.3389/fcimb.2020.541144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen W, Liu F, Ling Z et al (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 7(6):e39743. https://doi.org/10.1371/journal.pone.0039743

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zackular JP, Baxter NT, Iverson KD et al (2013) The gut microbiome modulates colon tumorigenesis. mBio 4(6):e00692-13. https://doi.org/10.1128/mBio.00692-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bascones-Martínez A, Figuero-Ruiz E (2004) Periodontal diseases as bacterial infection. Med Oral Patol Oral Cir Bucal 9(Suppl):101–100. https://doi.org/10.4321/s1699-65852005000300002

    Article  PubMed  Google Scholar 

  39. Alnuaimi AD, Ramdzan AN, Wiesenfeld D et al (2016) Candida virulence and ethanol-derived acetaldehyde production in oral cancer and non-cancer subjects. Oral Dis 22(8):805–814. https://doi.org/10.1111/odi.12565

    Article  CAS  PubMed  Google Scholar 

  40. Karpiński TM (2019) Role of oral microbiota in cancer development. Microorganisms 7(1):20. https://doi.org/10.3390/microorganisms7010020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Díaz P, Valenzuela Valderrama M, Bravo J et al (2018) Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol 9:5. https://doi.org/10.3389/fmicb.2018.00005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gur C, Ibrahim Y, Isaacson B et al (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42(2):344–355. https://doi.org/10.1016/j.immuni.2015.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Flanagan L, Schmid J, Ebert M et al (2014) Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 33(8):1381–1390. https://doi.org/10.1007/s10096-014-2081-3

    Article  CAS  PubMed  Google Scholar 

  44. Huang J, Liu D, Wang Y et al (2022) Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut 71(4):734–745. https://doi.org/10.1136/gutjnl-2020-321031

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by KX. Analyses were performed by KX and CXL. RC and CHZ assisted in substantive revisions to the drafted manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ran Chen or Chun-Hui Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10552_2023_1800_MOESM1_ESM.tif

Supplementary file1 Fig. S1 Sensitivity analyses of the associations between Prevotellaceae and oral cancer (TIF 1621 KB)

Supplementary file2 (DOCX 97 KB)

Supplementary file3 (DOCX 47 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, K., Li, CX., Chen, R. et al. Genetically predicted gut microbiome and risk of oral cancer. Cancer Causes Control 35, 429–435 (2024). https://doi.org/10.1007/s10552-023-01800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-023-01800-0

Keywords

Navigation