Skip to main content

Adolescent dairy product and calcium intake in relation to later prostate cancer risk and mortality in the NIH-AARP Diet and Health Study



Although a growing body of evidence supports an early-life contribution to prostate cancer (PCa) development, few studies have investigated early-life diet, and only three have examined early-life dairy product intake, a promising candidate risk factor because of its known/suspected influence on insulin-like growth factor levels and height.


We used recalled dietary data from 162,816 participants in the NIH-AARP Diet and Health Study to investigate associations for milk, cheese, ice cream, total dairy, and calcium intake at ages 12–13 years with incident total (n = 17,729), advanced (n = 2,348), and fatal PCa (n = 827) over 14 years of follow-up. We calculated relative risks (RRs) and 95% confidence intervals (CIs) by Cox proportional hazards regression.


We observed suggestive positive trends for milk, dairy, and calcium intake with total and/or advanced PCa (p-trends = 0.016–0.148). These trends attenuated after adjustment for additional components of adolescent diet, particularly red meat and vegetables/potatoes. In contrast, suggestive inverse trends were observed for cheese and ice cream intake with total and/or advanced PCa (p-trends = 0.043–0.153), and for milk, dairy, and calcium intake with fatal PCa (p-trend = 0.045–0.117).


Although these findings provide some support for a role of adolescent diet in increasing PCa risk, particularly for correlates of milk intake or overall dietary patterns, our protective findings for cheese and ice cream intake with PCa risk and mortality, and for all dairy products with PCa mortality, suggest alternative explanations, such as the influence of early-life socioeconomic status, and increased PCa screening, earlier detection, and better PCa care.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Google Scholar 

  2. 2.

    Brawley OW (2012) Prostate cancer epidemiology in the United States. World J Urol 30(2):195–200

    PubMed  Google Scholar 

  3. 3.

    Sutcliffe S, Colditz GA (2013) Prostate cancer: is it time to expand the research focus to early-life exposures? Nat Rev Cancer 13(3):208–518

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Angelsen A et al (1999) Pre- and postnatal testosterone administration induces proliferative epithelial lesions with neuroendocrine differentiation in the dorsal lobe of the rat prostate. Prostate 40(2):65–75

    CAS  PubMed  Google Scholar 

  5. 5.

    Suttie A et al (2003) A grading scheme for the assessment of proliferative lesions of the mouse prostate in the TRAMP model. Toxicol Pathol 31(1):31–38

    PubMed  Google Scholar 

  6. 6.

    Suttie AW et al (2005) An investigation of the effects of late-onset dietary restriction on prostate cancer development in the TRAMP mouse. Toxicol Pathol 33(3):386–397

    CAS  PubMed  Google Scholar 

  7. 7.

    Diamandis EP, Yu H (1996) Does prostate cancer start at puberty? J Clin Lab Anal 10(6):468–469

    CAS  PubMed  Google Scholar 

  8. 8.

    Gu FL, Xia TL, Kong XT (1994) Preliminary study of the frequency of benign prostatic hyperplasia and prostatic cancer in China. Urology 44(5):688–691

    CAS  PubMed  Google Scholar 

  9. 9.

    Sakr WA et al (1994) High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 8(3):439–443

    CAS  PubMed  Google Scholar 

  10. 10.

    Sanchez-Chapado M et al (2003) Prevalence of prostate cancer and prostatic intraepithelial neoplasia in Caucasian Mediterranean males: an autopsy study. Prostate 54(3):238–247

    PubMed  Google Scholar 

  11. 11.

    Yin M et al (2008) Prevalence of incidental prostate cancer in the general population: a study of healthy organ donors. J Urol 179(3):892–895

    PubMed  Google Scholar 

  12. 12.

    Jackson MA et al (1981) Factors involved in the high incidence of prostatic cancer among American blacks. Prog Clin Biol Res 53:111–132

    CAS  PubMed  Google Scholar 

  13. 13.

    Sakr WA et al (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150(2 Pt 1):379–385

    CAS  PubMed  Google Scholar 

  14. 14.

    Shiraishi T et al (1994) The frequency of latent prostatic carcinoma in young males: the Japanese experience. In Vivo 8(3):445–447

    CAS  PubMed  Google Scholar 

  15. 15.

    Guileyardo JM et al (1980) Prevalence of latent prostate carcinoma in two U.S. populations. J Natl Cancer Inst 65(2):311–316

    CAS  PubMed  Google Scholar 

  16. 16.

    Jahn JL, Giovannucci EL, Stampfer MJ (2015) The high prevalence of undiagnosed prostate cancer at autopsy: implications for epidemiology and treatment of prostate cancer in the Prostate-specific Antigen-era. Int J Cancer 137(12):2795–2802

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Howlader N et al (2013) SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). National Cancer Institute. 2012

  18. 18.

    Clarke MA, Joshu CE (2017) Early life exposures and adult cancer risk. Epidemiol Rev 39(1):11–27

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Colditz GA, Bohlke K, Berkey CS (2014) Breast cancer risk accumulation starts early: prevention must also. Breast Cancer Res Treat 145(3):567–579

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mahabir S (2013) Association between diet during preadolescence and adolescence and risk for breast cancer during adulthood. J Adolesc Health 52(5 Suppl):S30–S35

    PubMed  Google Scholar 

  21. 21.

    Gronberg H (2003) Prostate cancer epidemiology. Lancet 361(9360):859–864

    PubMed  Google Scholar 

  22. 22.

    Aune D et al (2015) Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr 101(1):87–117

    CAS  PubMed  Google Scholar 

  23. 23.

    López-Plaza B et al (2019) Milk and dairy product consumption and prostate cancer risk and mortality: an overview of systematic reviews and meta-analyses. Adv Nutr 10(suppl_2):S212–S223

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Harrison S et al (2017) Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control 28(6):497–528

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lu W et al (2016) Dairy products intake and cancer mortality risk: a meta-analysis of 11 population-based cohort studies. Nutr J 15(1):91

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Travis RC et al (2016) A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res 76(8):2288–2300

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Villamor E, Jansen EC (2016) Nutritional determinants of the timing of puberty. Annu Rev Public Health 37:33–46

    PubMed  Google Scholar 

  28. 28.

    Gunnell D et al (2001) Height, leg length, and cancer risk: a systematic review. Epidemiol Rev 23(2):313–342

    CAS  PubMed  Google Scholar 

  29. 29.

    Cook MB et al (2013) Childhood height and birth weight in relation to future prostate cancer risk: a cohort study based on the copenhagen school health records register. Cancer Epidemiol Biomark Prev 22(12):2232–2240

    Google Scholar 

  30. 30.

    Aarestrup J et al (2015) Childhood height increases the risk of prostate cancer mortality. Eur J Cancer 51(10):1340–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bonilla C et al (2016) Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Med 14:66

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Zuccolo L et al (2008) Height and prostate cancer risk: a large nested case–control study (ProtecT) and meta-analysis. Cancer Epidemiol Biomark Prev 17(9):2325–2336

    CAS  Google Scholar 

  33. 33.

    Emerging Risk Factors Collaboration (2012) Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis. Int J Epidemiol 41(5):1419–1433

    Google Scholar 

  34. 34.

    Berkey CS et al (2009) Dairy consumption and female height growth: prospective cohort study. Cancer Epidemiol Biomark Prev 18(6):1881–1887

    CAS  Google Scholar 

  35. 35.

    Wiley AS (2005) Does milk make children grow? Relationships between milk consumption and height in NHANES 1999–2002. Am J Hum Biol 17(4):425–441

    PubMed  Google Scholar 

  36. 36.

    Robinson WR, Poole C, Godley PA (2008) Systematic review of prostate cancer's association with body size in childhood and young adulthood. Cancer Causes Control 19(8):793–803

    PubMed  Google Scholar 

  37. 37.

    Eide MG et al (2005) Size at birth and gestational age as predictors of adult height and weight. Epidemiology 16(2):175–181

    PubMed  Google Scholar 

  38. 38.

    Gunther AL et al (2010) Dietary protein intake throughout childhood is associated with the timing of puberty. J Nutr 140(3):565–571

    PubMed  Google Scholar 

  39. 39.

    Torfadottir JE et al (2012) Milk intake in early life and risk of advanced prostate cancer. Am J Epidemiol 175(2):144–153

    PubMed  Google Scholar 

  40. 40.

    Andersson SO et al (1995) Early life risk factors for prostate cancer: a population-based case-control study in Sweden. Cancer Epidemiol Biomark Prev 4(3):187–192

    CAS  Google Scholar 

  41. 41.

    Van der Pols JC et al (2007) Childhood dairy intake and adult cancer risk: 65-y follow-up of the Boyd Orr cohort. Am J Clin Nutr 86(6):1722–1729

    PubMed  Google Scholar 

  42. 42.

    Schatzkin A et al (2001) Design and serendipity in establishing a large cohort with wide dietary intake distributions: the National Institutes of Health-American Association of Retired Persons Diet and Health Study. Am J Epidemiol 154(12):1119–1125

    CAS  PubMed  Google Scholar 

  43. 43.

    Munger KL et al (2011) Dietary intake of vitamin D during adolescence and risk of multiple sclerosis. J Neurol 258(3):479–485

    CAS  PubMed  Google Scholar 

  44. 44.

    Ruder EH et al (2011) Adolescent and mid-life diet: risk of colorectal cancer in the NIH-AARP Diet and Health Study. Am J Clin Nutr 94(6):1607–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Rosenblatt KA, Wicklund KG, Stanford JL (2001) Sexual factors and the risk of prostate cancer. Am J Epidemiol 153(12):1152–1158

    CAS  PubMed  Google Scholar 

  46. 46.

    Maruti SS et al (2005) Adult recall of adolescent diet: reproducibility and comparison with maternal reporting. Am J Epidemiol 161(1):89–97

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Maruti SS et al (2006) Validation of adolescent diet recalled by adults. Epidemiology 17(2):226–229

    PubMed  Google Scholar 

  48. 48.

    Potischman N et al (1998) Diet during adolescence and risk of breast cancer among young women. J Natl Cancer Inst 90(3):226–233

    CAS  PubMed  Google Scholar 

  49. 49.

    Dwyer JT et al (1989) Memory of food intake in the distant past. Am J Epidemiol 130(5):1033–1046

    CAS  PubMed  Google Scholar 

  50. 50.

    Chavarro JE et al (2009) Validity of adolescent diet recall 48 years later. Am J Epidemiol 170(12):1563–1570

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Wolk A et al (1997) Reliability of retrospective information on diet 20 years ago and consistency of independent measurements of remote adolescent diet. Nutr Cancer 29(3):234–241

    CAS  PubMed  Google Scholar 

  52. 52.

    McCullough ML, Giovannucci EL (2004) Diet and cancer prevention. Oncogene 23(38):6349–6364

    CAS  PubMed  Google Scholar 

  53. 53.

    Bylsma LC, Alexander DD (2015) A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr J 14:125

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kissinger DG, Sanchez A (1987) The association of dietary factors with the age of menarche. Nutr Res 7:471–479

    Google Scholar 

  55. 55.

    De Ridder CM et al (1991) Dietary habits, sexual maturation, and plasma hormones in pubertal girls: a longitudinal study. Am J Clin Nutr 54(5):805–813

    PubMed  Google Scholar 

  56. 56.

    Merzenich H, Boeing H, Wahrendorf J (1993) Dietary fat and sports activity as determinants for age at menarche. Am J Epidemiol 138(4):217–224

    CAS  PubMed  Google Scholar 

  57. 57.

    Berkey CS et al (2000) Relation of childhood diet and body size to menarche and adolescent growth in girls. Am J Epidemiol 152(5):446–452

    CAS  PubMed  Google Scholar 

  58. 58.

    Cheng G et al (2010) Diet quality in childhood is prospectively associated with the timing of puberty but not with body composition at puberty onset. J Nutr 140(1):95–102

    CAS  PubMed  Google Scholar 

  59. 59.

    Rogers IS et al (2010) Diet throughout childhood and age at menarche in a contemporary cohort of British girls. Public Health Nutr 13(12):2052–2063

    PubMed  Google Scholar 

  60. 60.

    Alimujiang A et al (2018) Childhood diet and growth in boys in relation to timing of puberty and adult height: the Longitudinal Studies of Child Health and Development. Cancer Causes Control 29(10):915–926

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Madathil S et al (2018) Disadvantageous socioeconomic position at specific life periods may contribute to prostate cancer risk and aggressiveness. Front Oncol 8:515

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    De Kok IM et al (2008) Childhood social class and cancer incidence: results of the globe study. Soc Sci Med 66(5):1131–1139

    PubMed  Google Scholar 

  63. 63.

    Nicolau B et al (2019) Shared social mechanisms underlying the risk of nine cancers: a life course study. Int J Cancer 144(1):59–67

    CAS  PubMed  Google Scholar 

  64. 64.

    Casas F et al (2012) Adapted ice cream as a nutritional supplement in cancer patients: impact on quality of life and nutritional status. Clin Transl Oncol 14(1):66–72

    CAS  PubMed  Google Scholar 

  65. 65.

    Gijsbers L et al (2016) Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. Am J Clin Nutr 103(4):1111–1124

    CAS  PubMed  Google Scholar 

Download references


We thank Dr. Linda Liao for assistance with acquiring AARP Study data, and Dr. Stephanie Smith-Warner, Sherry Yaun, and Tao Hou for assistance defining prostate cancer outcomes.


This analysis was funded by the Barnes-Jewish Hospital Foundation, the Alvin J. Siteman Cancer Center, and the Institute for Clinical and Translational Sciences.

Author information



Corresponding author

Correspondence to Siobhan Sutcliffe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



See Appendix Fig. 1 and Table 5 .

Fig. 1

Adolescent food frequency questionnaire in the NIH-AARP Diet and Health Study

Table 5 Relative risks (RRs) and 95% confidence intervals (CIs) for dairy and calcium intake from 12 to 13 years of age in relation to more advanced prostate cancer (T4, N1, M1 or death from PCa) in the NIH-AARP Diet and Health Study, 1996–2011

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Park, Y., Colditz, G.A. et al. Adolescent dairy product and calcium intake in relation to later prostate cancer risk and mortality in the NIH-AARP Diet and Health Study. Cancer Causes Control 31, 891–904 (2020).

Download citation


  • Prostate cancer
  • Diet
  • Dairy product
  • Calcium
  • Early life
  • Adolescent