Skip to main content

Advertisement

Log in

High-sensitivity C-reactive protein, hemoglobin A1c and breast cancer risk: a nested case–control study from Alberta’s Tomorrow Project cohort

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Our aim is to examine the associations between high-sensitivity C-reactive protein (hsCRP) and hemoglobin A1c (HbA1c), common biomarkers of inflammation and insulin resistance, respectively, with breast cancer risk, while adjusting for measures of excess body size.

Methods

We conducted a nested case–control study within the Alberta’s Tomorrow Project cohort (Alberta, Canada) including 197 incident breast cancer cases and 394 matched controls. The sample population included both pre- and postmenopausal women. Serum concentrations of hsCRP and HbA1c were measured from blood samples collected at baseline, along with anthropometric measurements, general health and lifestyle data. Conditional logistic regression was used to evaluate associations between hsCRP, HbA1c, and breast cancer risk adjusted for excess body size (body fat percentage) and other risk factors for breast cancer.

Results

Higher concentrations of hsCRP were associated with elevated breast cancer risk (odds ratio [OR] 1.27; 95% confidence interval [95% CI] 1.03–1.55). The observed associations were unchanged with adjustment for body fat percentage. Higher HbA1c concentrations were not significantly associated with an increased breast cancer risk (OR 1.22; 95% CI 0.17–8.75).

Conclusion

These data suggest that hsCRP may be associated with elevated breast cancer risk, independent of excess body size. However, elevated concentrations of HbA1c did not appear to increase breast cancer risk in apparently healthy women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canadian Cancer Society (2018) Canadian Cancer Statistics: a 2018 special report on cancer incidence by stage. Canadian Cancer Society, Toronto, ON

    Google Scholar 

  2. Canadian Cancer Society (2019) Canadian Cancer Society's Advisory Committee on Cancer Statistics, breast cancer statistics. Canadian Cancer Society, Toronto, ON

    Google Scholar 

  3. World Cancer Research Fund/American Institute for Cancer Research, Diet, Nutrition, physical activity and cancer: a global perspective. Continuous update project expert report 2018. 2018, WCRF/AICR.

  4. Jarde T et al (2011) Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer 47(1):33–43

    CAS  Google Scholar 

  5. Perks CM, Holly JM (2011) Hormonal mechanisms underlying the relationship between obesity and breast cancer. Endocrinol Metab Clin N Am 40(3):485–507

    CAS  Google Scholar 

  6. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316

    CAS  PubMed  Google Scholar 

  7. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  Google Scholar 

  9. Colotta F et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

    CAS  PubMed  Google Scholar 

  10. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    CAS  PubMed  Google Scholar 

  11. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111(12):1805–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Allin KH, Nordestgaard BG (2011) Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci 48(4):155–170

    CAS  PubMed  Google Scholar 

  14. Kaur RP et al (2018) Association of elevated levels of C-reactive protein with breast cancer, breast cancer subtypes, and poor outcome. Curr Probl Cancer 43:123–129

    PubMed  Google Scholar 

  15. Heikkila K et al (2007) Associations of circulating C-reactive protein and interleukin-6 with survival in women with and without cancer: findings from the British Women's Heart and Health Study. Cancer Epidemiol Biomarkers Prev 16(6):1155–1159

    PubMed  Google Scholar 

  16. Alokail MS et al (2013) Metabolic syndrome biomarkers and early breast cancer in Saudi women: evidence for the presence of a systemic stress response and/or a pre-existing metabolic syndrome-related neoplasia risk? BMC Cancer 13:54

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dossus L et al (2014) C-reactive protein and postmenopausal breast cancer risk: results from the E3N cohort study. Cancer Causes Control 25(4):533–539

    PubMed  Google Scholar 

  18. Gaudet MM et al (2013) Obesity-related markers and breast cancer in CPS-II Nutrition Cohort. Int J Mol Epidemiol Genet 4(3):156–166

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hong T et al (2013) Preoperative serum C-reactive protein levels and early breast cancer by BMI and menopausal status. Cancer Invest 31(4):279–285

    CAS  PubMed  Google Scholar 

  20. Il'yasova D et al (2005) Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev 14(10):2413–2418

    CAS  PubMed  Google Scholar 

  21. Ollberding NJ et al (2013) Prediagnostic leptin, adiponectin, C-reactive protein, and the risk of postmenopausal breast cancer. Cancer Prev Res (Phila) 6(3):188–195

    CAS  Google Scholar 

  22. Prizment AE et al (2013) Plasma C-reactive protein, genetic risk score, and risk of common cancers in the Atherosclerosis Risk in Communities study. Cancer Causes Control 24(12):2077–2087

    PubMed  Google Scholar 

  23. Siemes C et al (2006) C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol 24(33):5216–5222

    CAS  PubMed  Google Scholar 

  24. Touvier M et al (2013) Association between prediagnostic biomarkers of inflammation and endothelial function and cancer risk: a nested case-control study. Am J Epidemiol 177(1):3–13

    PubMed  Google Scholar 

  25. Wang G et al (2015) A prospective follow-up study of the relationship between C-reactive protein and human cancer risk in the Chinese Kailuan Female Cohort. Cancer Epidemiol Biomarkers Prev 24(2):459–465

    CAS  PubMed  Google Scholar 

  26. Zeleniuch-Jacquotte A et al (2008) Re: C-reactive protein and risk of breast cancer. J Natl Cancer Inst 100(6):443–444

    CAS  PubMed  Google Scholar 

  27. Zhang SM et al (2007) C-reactive protein and risk of breast cancer. J Natl Cancer Inst 99(11):890–894

    CAS  PubMed  Google Scholar 

  28. Wang J et al (2015) Plasma C-reactive protein and risk of breast cancer in two prospective studies and a meta-analysis. Cancer Epidemiol Biomarkers Prev 24(8):1199–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson SH et al (2017) The Association of the C-Reactive Protein inflammatory biomarker with breast cancer incidence and mortality in the women's health initiative. Cancer Epidemiol Biomarkers Prev 26(7):1100–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Trichopoulos D et al (2006) Plasma C-reactive protein and risk of cancer: a prospective study from Greece. Cancer Epidemiol Biomarkers Prev 15(2):381–384

    CAS  PubMed  Google Scholar 

  31. Frydenberg H et al (2016) Pre-diagnostic high-sensitive C-reactive protein and breast cancer risk, recurrence, and survival. Breast Cancer Res Treat 155(2):345–354

    CAS  PubMed  Google Scholar 

  32. Heikkila K et al (2009) Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control 20(1):15–26

    PubMed  Google Scholar 

  33. Allin KH, Bojesen SE, Nordestgaard BG (2009) Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol 27(13):2217–2224

    CAS  PubMed  Google Scholar 

  34. Van Hemelrijck M et al (2011) Association between levels of C-reactive protein and leukocytes and cancer: three repeated measurements in the Swedish AMORIS study. Cancer Epidemiol Biomarkers Prev 20(3):428–437

    PubMed  PubMed Central  Google Scholar 

  35. American Diabetes A (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69

    Google Scholar 

  36. Joshu CE et al (2012) Glycated hemoglobin and cancer incidence and mortality in the Atherosclerosis in Communities (ARIC) Study, 1990–2006. Int J Cancer 131(7):1667–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Giovannucci E et al (2010) Diabetes and cancer: a consensus report. Diabetes Care 33(7):1674–1685

    PubMed  PubMed Central  Google Scholar 

  38. Osei K et al (2003) Is glycosylated hemoglobin A1c a surrogate for metabolic syndrome in nondiabetic, first-degree relatives of African-American patients with type 2 diabetes? J Clin Endocrinol Metab 88(10):4596–4601

    CAS  PubMed  Google Scholar 

  39. de Beer JC, Liebenberg L (2014) Does cancer risk increase with HbA1c, independent of diabetes? Br J Cancer 110(9):2361–2368

    PubMed  PubMed Central  Google Scholar 

  40. Larsson SC, Mantzoros CS, Wolk A (2007) Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 121(4):856–862

    CAS  PubMed  Google Scholar 

  41. Liao S et al (2011) Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev 12(4):1061–1065

    PubMed  Google Scholar 

  42. Boyle P et al (2012) Diabetes and breast cancer risk: a meta-analysis. Br J Cancer 107(9):1608–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruning PF et al (1992) Insulin resistance and breast-cancer risk. Int J Cancer 52(4):511–516

    CAS  PubMed  Google Scholar 

  44. Del Giudice ME et al (1998) Insulin and related factors in premenopausal breast cancer risk. Breast Cancer Res Treat 47(2):111–120

    PubMed  Google Scholar 

  45. Jernstrom H, Barrett-Connor E (1999) Obesity, weight change, fasting insulin, proinsulin, C-peptide, and insulin-like growth factor-1 levels in women with and without breast cancer: the Rancho Bernardo Study. J Womens Health Gend Based Med 8(10):1265–1272

    CAS  PubMed  Google Scholar 

  46. Manjer J et al (2001) Risk of breast cancer in relation to anthropometry, blood pressure, blood lipids and glucose metabolism: a prospective study within the Malmo Preventive Project. Eur J Cancer Prev 10(1):33–42

    CAS  PubMed  Google Scholar 

  47. Yang G et al (2001) Population-based, case-control study of blood C-peptide level and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10(11):1207–1211

    CAS  PubMed  Google Scholar 

  48. Kaaks R et al (2002) Prospective study of IGF-I, IGF-binding proteins, and breast cancer risk, in northern and southern Sweden. Cancer Causes Control 13(4):307–316

    PubMed  Google Scholar 

  49. Mink PJ et al (2002) Serum insulin and glucose levels and breast cancer incidence: the atherosclerosis risk in communities study. Am J Epidemiol 156(4):349–352

    PubMed  Google Scholar 

  50. Muti P et al (2002) Fasting glucose is a risk factor for breast cancer: a prospective study. Cancer Epidemiol Biomarkers Prev 11(11):1361–1368

    CAS  PubMed  Google Scholar 

  51. Keinan-Boker L et al (2003) Circulating levels of insulin-like growth factor I, its binding proteins -1,-2, -3, C-peptide and risk of postmenopausal breast cancer. Int J Cancer 106(1):90–95

    CAS  PubMed  Google Scholar 

  52. Lawlor DA, Smith GD, Ebrahim S (2004) Hyperinsulinaemia and increased risk of breast cancer: findings from the British Women's Heart and Health Study. Cancer Causes Control 15(3):267–275

    PubMed  Google Scholar 

  53. Malin A et al (2004) Evaluation of the synergistic effect of insulin resistance and insulin-like growth factors on the risk of breast carcinoma. Cancer 100(4):694–700

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schairer C et al (2004) Serum concentrations of IGF-I, IGFBP-3 and c-peptide and risk of hyperplasia and cancer of the breast in postmenopausal women. Int J Cancer 108(5):773–779

    CAS  PubMed  Google Scholar 

  55. Jee SH et al (2005) Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293(2):194–202

    CAS  PubMed  Google Scholar 

  56. Lin J et al (2006) A prospective study of hemoglobin A1c concentrations and risk of breast cancer in women. Cancer Res 66(5):2869–2875

    CAS  PubMed  Google Scholar 

  57. Rapp K et al (2006) Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia 49(5):945–952

    CAS  PubMed  Google Scholar 

  58. Miao Jonasson J et al (2012) HbA1C and cancer risk in patients with type 2 diabetes–a nationwide population-based prospective cohort study in Sweden. PLoS ONE 7(6):e38784

    PubMed  PubMed Central  Google Scholar 

  59. Kim JY et al (2018) Glycated hemoglobin and cancer risk in Korean adults: results from Korean Genome and Epidemiology Study. Clin Nutr Res 7(3):170–177

    PubMed  PubMed Central  Google Scholar 

  60. Bryant H et al (2006) Population-based cohort development in Alberta, Canada: a feasibility study. Chronic Dis Can 27(2):51–59

    PubMed  Google Scholar 

  61. Robson PJ et al (2016) Design, methods and demographics from phase I of Alberta's Tomorrow Project cohort: a prospective cohort profile. CMAJ Open 4(3):E515–E527

    PubMed  PubMed Central  Google Scholar 

  62. Ye M et al (1098l) Cohort profile: Alberta's Tomorrow Project. Int J Epidemiol 46(4):1097–1098l

    PubMed  Google Scholar 

  63. Borugian MJ et al (2010) The Canadian Partnership for Tomorrow Project: building a pan-Canadian research platform for disease prevention. CMAJ 182(11):1197–1201

    PubMed  PubMed Central  Google Scholar 

  64. Dummer TJB et al (2018) The Canadian Partnership for Tomorrow Project: a pan-Canadian platform for research on chronic disease prevention. CMAJ 190(23):E710–E717

    PubMed  PubMed Central  Google Scholar 

  65. USA North American Association of Central Cancer Registries 2016 2016 May 1, 2017]; https://www.naaccr.org/certified-in-2010-canadian-registries-list-and-map/

  66. The 2017 Report on Cancer Statistics in Alberta. 2017, Alberta Health Services: CancerControl AB, Surveillance & Reporting: Edmonton, AB.

  67. American Diabetes Association (2013) Standards of medical care in diabetes–2013. Diab Care 36(Suppl 1):S11–66

    Google Scholar 

  68. Guo L et al (2015) C-reactive protein and risk of breast cancer: a systematic review and meta-analysis. Sci Rep 5:10508

    PubMed  PubMed Central  Google Scholar 

  69. Gunter MJ et al (2015) Circulating adipokines and inflammatory markers and postmenopausal breast cancer risk. J Natl Cancer Inst 107(9):169

    Google Scholar 

  70. Bodmer M et al (2010) Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care 33(6):1304–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cust AE et al (2009) The influence of overweight and insulin resistance on breast cancer risk and tumour stage at diagnosis: a prospective study. Breast Cancer Res Treat 113(3):567–576

    CAS  PubMed  Google Scholar 

  72. Hope C et al (2016) Relationship between HbA1c and cancer in people with or without diabetes: a systematic review. Diabet Med 33(8):1013–1025

    CAS  PubMed  Google Scholar 

  73. Parekh N et al (2013) Metabolic dysregulation of the insulin-glucose axis and risk of obesity-related cancers in the Framingham heart study-offspring cohort (1971–2008). Cancer Epidemiol Biomarkers Prev 22(10):1825–1836

    PubMed  PubMed Central  Google Scholar 

  74. Travier N et al (2007) Association between glycosylated hemoglobin and cancer risk: a New Zealand linkage study. Ann Oncol 18(8):1414–1419

    CAS  PubMed  Google Scholar 

  75. Onitilo AA et al (2014) Type 2 diabetes mellitus, glycemic control, and cancer risk. Eur J Cancer Prev 23(2):134–140

    CAS  PubMed  Google Scholar 

  76. Goto A et al (2016) High hemoglobin A1c levels within the non-diabetic range are associated with the risk of all cancers. Int J Cancer 138(7):1741–1753

    CAS  PubMed  Google Scholar 

  77. Suzuki Y et al (2017) BMI change and abdominal circumference are risk factors for breast cancer, even in Asian women. Breast Cancer Res Treat 166(3):919–925

    PubMed  Google Scholar 

  78. Erickson K et al (2011) Clinically defined type 2 diabetes mellitus and prognosis in early-stage breast cancer. J Clin Oncol 29(1):54–60

    PubMed  Google Scholar 

  79. Gallagher D et al (1996) How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143(3):228–239

    CAS  PubMed  Google Scholar 

  80. Beeson WL et al (2010) Comparison of body composition by bioelectrical impedance analysis and dual-energy X-ray absorptiometry in Hispanic diabetics. Int J Body Compos Res 8(2):45–50

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Libby P et al (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54(23):2129–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pearson TA et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511

    PubMed  Google Scholar 

  83. Meier-Ewert HK et al (2001) Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin Chem 47(3):426–430

    CAS  PubMed  Google Scholar 

  84. Ockene IS et al (2001) Variability and classification accuracy of serial high-sensitivity C-reactive protein measurements in healthy adults. Clin Chem 47(3):444–450

    CAS  PubMed  Google Scholar 

  85. Bunn HF, Gabbay KH, Gallop PM (1978) The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200(4337):21–27

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the advice and contributions of Megan Farris, Joy Pader, and Yibing Ruan on this paper. Cancer registry data were obtained through linkage with Cancer Surveillance & Reporting, Cancer Research and Analytics, CancerControl Alberta. Tiffany Haig received graduate student funding support from the Canadian Institute of Health Research (CIHR). Darren Brenner was supported by a Canadian Cancer Society Capacity Development Award in Cancer Prevention (Grant No. 703917). The views expressed herein represent the views of the author(s) and not of Alberta’s Tomorrow Project or any of its funders. Alberta’s Tomorrow Project is only possible due to the commitment of its research participants, its staff and its funders: Alberta Health and the Alberta Cancer Prevention Legacy Fund, Alberta Cancer Foundation, Canadian Partnership Against Cancer and substantial in kind funding from Alberta Health Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren R. Brenner.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, T.R., Friedenreich, C.M., Robson, P.J. et al. High-sensitivity C-reactive protein, hemoglobin A1c and breast cancer risk: a nested case–control study from Alberta’s Tomorrow Project cohort. Cancer Causes Control 31, 1057–1068 (2020). https://doi.org/10.1007/s10552-020-01329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-020-01329-6

Keywords

Navigation