Skip to main content

Advertisement

Log in

Pre-diagnostic carbohydrate intake and treatment failure after radical prostatectomy for early-stage prostate cancer

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

An association between dietary carbohydrate intake and prostate cancer (PCa) prognosis is biologically plausible, but data are scarce. This prospective cohort study examined the relation between pre-diagnostic carbohydrate intake and treatment failure following radical prostatectomy for clinically early-stage PCa.

Methods

We identified 205 men awaiting radical prostatectomy and assessed their usual dietary intake of carbohydrates using the 110-item Block food frequency questionnaire. We also evaluated carbohydrate intake quality using a score based on the consumption of sugars relative to fiber, fat, and protein. Logistic regression analyzed their associations with the odds of treatment failure, defined as a detectable and rising serum prostate-specific antigen (PSA) or receiving androgen deprivation therapy (ADT) within 2 years.

Results

Sucrose consumption was associated with a higher odds and fiber consumption with a lower odds of ADT after accounting for age, race/ethnicity, body mass index, and tumor characteristics (odds ratio [OR] (95% confidence interval [CI]) 5.68 (1.71, 18.9) for 3rd vs. 1st sucrose tertile and 0.88 (0.81, 0.96) per gram of fiber/day, respectively). Increasing carbohydrate intake quality also associated with a lower odds of ADT (OR (95% CI) 0.78 (0.66, 0.92) per unit increase in score, range 0–12).

Conclusions

Pre-diagnostic dietary carbohydrate intake composition and quality influence the risk of primary treatment failure for early-stage PCa. Future studies incorporating molecular aspects of carbohydrate metabolism could clarify possible underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Cancer Society (2017) Cancer facts & figures. American Cancer Society, Atlanta

    Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

    Article  PubMed  Google Scholar 

  3. Group USCSW (2018) Cancer Statistics Data Visualizations Tool, based on November 2017 submission data (1999-2015). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute

  4. Kolodziej M (2014) Management of biochemically recurrent prostate cancer following local therapy. Am J Manag Care 20:S273–S281

    PubMed  Google Scholar 

  5. Paller CJ, Antonarakis ES, Eisenberger MA, Carducci MA (2013) Management of patients with biochemical recurrence after local therapy for prostate cancer. Hematol Oncol Clin N Am 27:1205–1219

    Article  Google Scholar 

  6. Wright JL, Plymate SR, Porter MP et al (2013) Hyperglycemia and prostate cancer recurrence in men treated for localized prostate cancer. Prostate Cancer Prostatic Dis 16:204–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braga-Basaria M, Dobs AS, Muller DC et al (2006) Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol 24:3979–3983

    Article  PubMed  Google Scholar 

  8. Ngo TH, Barnard RJ, Leung PS, Cohen P, Aronson WJ (2003) Insulin-like growth factor I (IGF-I) and IGF binding protein-1 modulate prostate cancer cell growth and apoptosis: possible mediators for the effects of diet and exercise on cancer cell survival. Endocrinology 144:2319–2324

    Article  CAS  PubMed  Google Scholar 

  9. Vidal AC, Williams CD, Allott EH et al (2015) Carbohydrate intake, glycemic index and prostate cancer risk. Prostate 75:430–439

    Article  CAS  PubMed  Google Scholar 

  10. Nimptsch K, Kenfield S, Jensen MK et al (2011) Dietary glycemic index, glycemic load, insulin index, fiber and whole-grain intake in relation to risk of prostate cancer. Cancer Causes Control: CCC 22:51–61

    Article  CAS  PubMed  Google Scholar 

  11. Wang RJ, Tang JE, Chen Y, Gao JG (2015) Dietary fiber, whole grains, carbohydrate, glycemic index, and glycemic load in relation to risk of prostate cancer. Onco Targets Therapy 8:2415–2426

    CAS  Google Scholar 

  12. Giovannucci E, Rimm EB, Wolk A et al (1998) Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res 58:442–447

    CAS  PubMed  Google Scholar 

  13. Mavropoulos JC, Buschemeyer WC III, Tewari AK et al (2009) The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev Res (Phila) 2:557–565

    Article  CAS  Google Scholar 

  14. Venkateswaran V, Haddad AQ, Fleshner NE et al (2007) Association of diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. J Natl Cancer Inst 99:1793–1800

    Article  PubMed  Google Scholar 

  15. Masko EM, Allott EH, Freedland SJ (2013) The relationship between nutrition and prostate cancer: is more always better? Eur Urol 63:810–820

    Article  CAS  PubMed  Google Scholar 

  16. Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124:453–469

    Article  CAS  PubMed  Google Scholar 

  17. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27

    Article  CAS  PubMed  Google Scholar 

  18. Buyyounouski MK, Choyke PL, McKenney JK et al (2017) Prostate cancer—major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin 67:245–253

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tan PH, Cheng L, Srigley JR et al (2011) International Society of Urological Pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 5: surgical margins. Mod Pathol 24:48–57

    Article  PubMed  Google Scholar 

  20. Freedland SJ, Mavropoulos J, Wang A et al (2008) Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 68:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seidelmann SB, Claggett B, Cheng S et al (2018) Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 3:e419–e428

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jacobs DR Jr, Marquart L, Slavin J, Kushi LH (1998) Whole-grain intake and cancer: an expanded review and meta-analysis. Nutr Cancer 30:85–96

    Article  PubMed  Google Scholar 

  23. Drake I, Sonestedt E, Gullberg B et al (2012) Dietary intakes of carbohydrates in relation to prostate cancer risk: a prospective study in the Malmo Diet and Cancer cohort. Am J Clin Nutr 96:1409–1418

    Article  CAS  PubMed  Google Scholar 

  24. Egeberg R, Olsen A, Christensen J et al (2011) Intake of whole-grain products and risk of prostate cancer among men in the Danish Diet, Cancer and Health cohort study. Cancer Causes Control: CCC 22:1133–1139

    Article  PubMed  Google Scholar 

  25. Suzuki R, Allen NE, Key TJ et al (2009) A prospective analysis of the association between dietary fiber intake and prostate cancer risk in EPIC. Int J Cancer 124:245–249

    Article  CAS  PubMed  Google Scholar 

  26. Tabung F, Steck SE, Su LJ et al (2012) Intake of grains and dietary fiber and prostate cancer aggressiveness by race. Prostate Cancer 2012:323296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohamed-Ali V, Pinkney JH, Panahloo A, Cwyfan-Hughes S, Holly JM, Yudkin JS (1999) Insulin-like growth factor binding protein-1 in NIDDM: relationship with the insulin resistance syndrome. Clin Endocrinol (Oxford) 50:221–228

    Article  CAS  Google Scholar 

  28. Bang P, Nygren J, Carlsson-Skwirut C, Thorell A, Ljungqvist O (1998) Postoperative induction of insulin-like growth factor binding protein-3 proteolytic activity: relation to insulin and insulin sensitivity. J Clin Endocrinol Metab 83:2509–2515

    CAS  PubMed  Google Scholar 

  29. Hsing AW, Chua S Jr, Gao YT et al (2001) Prostate cancer risk and serum levels of insulin and leptin: a population-based study. J Natl Cancer Inst 93:783–789

    Article  CAS  PubMed  Google Scholar 

  30. Wolk A, Mantzoros CS, Andersson SO et al (1998) Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. J Natl Cancer Inst 90:911–915

    Article  CAS  PubMed  Google Scholar 

  31. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92:1472–1489

    Article  CAS  PubMed  Google Scholar 

  32. Lehrer S, Diamond EJ, Stagger S, Stone NN, Stock RG (2002) Increased serum insulin associated with increased risk of prostate cancer recurrence. Prostate 50:1–3

    Article  PubMed  Google Scholar 

  33. Voznesenskaya A, Tordoff MG (2015) Low-calcium diet prevents fructose-induced hyperinsulinemia and ameliorates the response to glucose load in rats. Nutr Metab (London) 12:38

    Article  CAS  Google Scholar 

  34. Kim Y, Keogh JB, Clifton PM (2017) Consumption of red and processed meat and refined grains for 4 weeks decreases insulin sensitivity in insulin-resistant adults: a randomized crossover study. Metabolism 68:173–183

    Article  CAS  PubMed  Google Scholar 

  35. Lopez-Alarcon M, Perichart-Perera O, Flores-Huerta S et al (2014) Excessive refined carbohydrates and scarce micronutrients intakes increase inflammatory mediators and insulin resistance in prepubertal and pubertal obese children independently of obesity. Mediat Inflamm 2014:849031

    Article  CAS  Google Scholar 

  36. Zuniga YL, Rebello SA, Oi PL et al (2014) Rice and noodle consumption is associated with insulin resistance and hyperglycaemia in an Asian population. Br J Nutr 111:1118–1128

    Article  CAS  PubMed  Google Scholar 

  37. Cook LT, O’Reilly GA, Goran MI, Weigensberg MJ, Spruijt-Metz D, Davis JN (2014) Vegetable consumption is linked to decreased visceral and liver fat and improved insulin resistance in overweight Latino youth. J Acad Nutr Diet 114:1776–1783

    Article  PubMed  PubMed Central  Google Scholar 

  38. Damsgaard CT, Biltoft-Jensen A, Tetens I et al (2017) Whole-grain intake, reflected by dietary records and biomarkers, is inversely associated with circulating insulin and other cardiometabolic markers in 8- to 11-year-old children. J Nutr 147:816–824

    Article  CAS  PubMed  Google Scholar 

  39. Magnusdottir OK, Landberg R, Gunnarsdottir I et al (2014) Plasma alkylresorcinols C17:0/C21:0 ratio, a biomarker of relative whole-grain rye intake, is associated to insulin sensitivity: a randomized study. Eur J Clin Nutr 68:453–458

    Article  CAS  PubMed  Google Scholar 

  40. Zhou AL, Hergert N, Rompato G, Lefevre M (2015) Whole grain oats improve insulin sensitivity and plasma cholesterol profile and modify gut microbiota composition in C57BL/6J mice. J Nutr 145:222–230

    Article  CAS  PubMed  Google Scholar 

  41. Freedland SJ, Aronson WJ (2009) Dietary intervention strategies to modulate prostate cancer risk and prognosis. Curr Opin Urol 19:263–267

    Article  PubMed  Google Scholar 

Download references

Funding

Funding for this study was provided by NIH/NCI (Grant No. 5R01CA129140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Freeman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Kong, A., Flanigan, R.C. et al. Pre-diagnostic carbohydrate intake and treatment failure after radical prostatectomy for early-stage prostate cancer. Cancer Causes Control 30, 271–279 (2019). https://doi.org/10.1007/s10552-019-1134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-019-1134-4

Keywords

Navigation