Cancer Causes & Control

, Volume 29, Issue 11, pp 1027–1038 | Cite as

Occupational variation in the risk of female breast cancer in the Nordic countries

  • Sushmita KatuwalEmail author
  • Jan Ivar Martinsen
  • Kristina Kjaerheim
  • Pär Sparen
  • Laufey Tryggvadottir
  • Elsebeth Lynge
  • Elisabete Weiderpass
  • Eero Pukkala
Original paper



This study aimed to determine occupational variations in the incidence of breast cancer in the population-based cohort of Nordic Occupational Cancer Study (NOCCA).


The study included long-term follow-up data from almost 7.5 million Nordic women. Participants were assigned to one of the 54 occupational categories based on census records at the ages of 30–64 years. Sixty-two thousand cases of breast cancer were identified through record linkages between nationwide cancer registries in Finland, Sweden, Norway, Denmark, and Iceland, followed up between 1961 and 2005. Country-specific standardized incidence ratios (SIRs) with 95% confidence intervals were estimated.


Overall, the highest risk elevations were seen among military personnel (SIR 1.58, 95% CI 1.03–2.32), dentists (SIR 1.43, 95% CI 1.31–1.56), and physicians (SIR 1.35, 95% CI 1.26–1.46). The lowest risks were observed among gardeners (SIR 0.76, 95% CI 0.74–0.78), farmers (SIR 0.80, 95% CI 0.78–0.82), and woodworkers (SIR 0.75, 95% CI 0.70–0.81). Welders, tobacco workers, and painters had higher SIRs for breast cancer diagnosed at age < 50. A reduced risk was observed among forestry workers, welders, and fishery workers for breast cancers diagnosed both before and after age 50. The SIRs for breast cancer did not vary substantially by histology. A significantly increased risk of breast cancer was observed among laboratory workers in the latest calendar period (1991–2005) compared with earlier periods (1976–1990 and 1961–1975). Occupations such as farming, forestry, driving, and gardening had low SIRs during all periods.


The study suggests that the risk of breast cancer varies by occupation. Heterogeneity is also observed in some occupational categories according to age (before or after 50), histology, and calendar period.


Breast cancer Nordic Occupational exposure Risk factors 


  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) Cancer incidence and mortality worldwide: IARC cancer base no. 11. Accessed 6 March 2017
  2. 2.
    Engholm G, Ferlay J, Christensen N, Hansen HL, Hertzum-Larsen R, Johannesen TB, Kejs AMT, Khan S, Ólafsdóttir E, Petersen T, Schmidt LKH, Virtanen A, Storm HH (2017) Cancer incidence, mortality, prevalence and survival in the Nordic countries, version 8.0. Accessed 27 Dec 2017
  3. 3.
    Ma H, Bernstein L, Pike MC, Ursin G (2006) Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Breast Cancer Res 8(4):R43. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140CrossRefGoogle Scholar
  5. 5.
    Weiderpass E, Meo M, Vainio H (2011) Risk factors for breast cancer, including occupational exposures. Saf Health Work 2(1):1–8. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Janerich DT, Hoff MB (1982) Evidence for a crossover in breast cancer risk factors. Am J Epidemiol 116:737–742CrossRefGoogle Scholar
  7. 7.
    Tryggvadottir L, Tulinius H, Eyfjord JE, Sigurvinsson T (2002) Breast cancer risk factors and age at diagnosis: an Icelandic cohort study. Int J Cancer 98(4):604–608CrossRefGoogle Scholar
  8. 8.
    Nickels S, Truong T, Hein R, Stevens K, Buck K, Behrens S et al (2013) Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLOS Genet 9(3):e1003284CrossRefGoogle Scholar
  9. 9.
    Li CI, Weiss NS, Stanford JL, Daling JR (2000) Hormone replacement therapy in relation to risk of lobular and ductal breast carcinoma in middle-aged women. Cancer 88(11):2570–2577CrossRefGoogle Scholar
  10. 10.
    Sasco AJ (2001) Epidemiology of breast cancer:. an environmental disease? APMIS 109(5):321–332CrossRefGoogle Scholar
  11. 11.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M et al (2000) Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85CrossRefGoogle Scholar
  12. 12.
    Slack R, Young C, Rushton L, British Occupational Cancer Burden Study Group (2012) Occupational cancer in Britain: female cancers—breast, cervix and ovary. Br J Cancer 107(Suppl. 1):S27–S32CrossRefGoogle Scholar
  13. 13.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2010) Painting, firefighting, and shiftwork. IARC Monogr Eval Carcinog Risks Hum 98:9–764PubMedCentralGoogle Scholar
  14. 14.
    Schernhammer ES, Kroenke CH, Laden F, Hankinson SE (2006) Night work and risk of breast cancer. Epidemiology 17(1):108–111CrossRefGoogle Scholar
  15. 15.
    Stevens RG (2009) Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol 38(4):963–970CrossRefGoogle Scholar
  16. 16.
    Feychting M, Forssen U (2006) Electromagnetic fields and female breast cancer. Cancer Causes Control 17(4):553–558CrossRefGoogle Scholar
  17. 17.
    Broeks A, Braaf LM, Wessels LF, van de Vijver M, De Bruin ML, Stovall M et al (2010) Radiation-associated breast tumors display a distinct gene expression profile. Int J Radiat Oncol Biol Phys 76(2):540–547CrossRefGoogle Scholar
  18. 18.
    Ziegler RG, Hoover RN, Pike MC, Hildesheim A, Nomura AM, West DW et al (1993) Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 85:1819–1827CrossRefGoogle Scholar
  19. 19.
    Peplonska B, Stewart P, Szeszenia-Dąbrowska N, Lissowska J, Brinton LA, Gromiec JP et al (2010) Occupational exposure to organic solvents and breast cancer in women. Occup Environ Med 67(11):722–729CrossRefGoogle Scholar
  20. 20.
    Ji BT, Blair A, Shu XO, Chow WH, Hauptmann M, Dosemeci M et al (2008) Occupation and breast cancer risk among Shanghai women in a population-based cohort study. Am J Ind Med 51(2):100–110CrossRefGoogle Scholar
  21. 21.
    Pukkala E, Martinsen JI, Lynge E, Gunnarsdottir HK, Sparén P, Tryggvadottir L et al (2009) Occupation and cancer—follow-up of 15 million people in five nordic countries. Acta Oncol 48(5):646–790CrossRefGoogle Scholar
  22. 22.
    Pakarinen M, Raitanen J, Kaaja R, Luoto R (2010) Secular trend in the menopausal age in Finland 1997–2007 and correlation with socioeconomic, reproductive and lifestyle factors. Maturitas 66(4):417–422CrossRefGoogle Scholar
  23. 23.
    Brandt J, Garne JP, Tengrup I, Manjer J (2015) Age at diagnosis in relation to survival following breast cancer: a cohort study. World J Surg Oncol 13:33. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Altman DG, Machin D, Bryant TN, Gardner MJ (2000) Statistics with confidence: confidence intervals and statistical guidelines, 2nd edn. BMJ Books, LondonGoogle Scholar
  25. 25.
    Kullberg C, Selander J, Albin M, Borgquist S, Manjer J, Gustavsson P (2017) Female white-collar workers remain at higher risk of breast cancer after adjustments for individual risk factors related to reproduction and lifestyle. Occup Environ Med 74(9):652–658CrossRefGoogle Scholar
  26. 26.
    Goldberg MS, Labreche F (1996) Occupational risk factors for female breast cancer: a review. Occup Environ Med 53(3):145–156CrossRefGoogle Scholar
  27. 27.
    Gardner KM, Ou SX, Jin F, Dai Q, Ruan Z, Thompson SJ et al (2002) Occupations and breast cancer risk among Chinese women in urban Shanghai. Am J Ind Med 42(4):296–308CrossRefGoogle Scholar
  28. 28.
    Pathak DR, Speizer FE, Willett WC, Rosner B, Lipnick RJ (1986) Parity and breast cancer risk: possible effect on age at diagnosis. Int J Cancer 37(1):21–25CrossRefGoogle Scholar
  29. 29.
    Hsieh C, Pavia M, Lambe M, Lan SJ, Colditz GA, Ekbom A et al (1994) Dual effect of parity on breast cancer risk. Eur J Cancer 30A(7):969–973CrossRefGoogle Scholar
  30. 30.
    Larsen SB, Olsen A, Lynch J, Christensen J, Overvad K, Tjønneland A et al (2011) Socioeconomic position and lifestyle in relation to breast cancer incidence among postmenopausal women: a prospective cohort study, Denmark, 1993–2006. Cancer Epidemiol 35(5):438–441CrossRefGoogle Scholar
  31. 31.
    Pudrovska T (2013) Job authority and breast cancer. Soc Forces 92(1):1–24. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Maina G, Bovenzi M, Palmas A, Larese Filon F (2009) Associations between two job stress models and measures of salivary cortisol. Int Arch Occup Environ Health 82(9):1141–1150CrossRefGoogle Scholar
  33. 33.
    Reichardt HM, Horsch K, Grone HJ, Kolbus A, Beug H, Hynes N et al (2001) Mammary gland development and lactation are controlled by different glucocorticoid receptor activities. Eur J Endocrinol 145(4):519–527CrossRefGoogle Scholar
  34. 34.
    Russo J, Hasan Lareef M, Balogh G, Guo S, Russo IH (2003) Estrogen and its metabolites are carcinogenic agents in human breast epithelial cells. J Steroid Biochem Mol Biol 87(1):1–25CrossRefGoogle Scholar
  35. 35.
    Schernhammer ES, Hankinson SE, Rosner B, Kroenke C, Willett WC, Colditz GA et al (2004) Job stress and breast cancer risk: the Nurses’ Health Study. Am J Epidemiol 160(11):1079–1086CrossRefGoogle Scholar
  36. 36.
    Nielsen NR, Stahlberg C, Strandberg-Larsen K, Kristensen TS, Zhang ZF, Hundrup YA et al (2008) Are work-related stressors associated with diagnosis of more advanced stages of incident breast cancers? Cancer Causes Control 19(3):297–303CrossRefGoogle Scholar
  37. 37.
    Granström C, Sundquist J, Hemminki K (2008) Population attributable risks for breast cancer in Swedish women by morphological type. Breast Cancer Res Treat 111(3):559–568CrossRefGoogle Scholar
  38. 38.
    Li CI, Daling JR, Malone KE, Bernstein L, Marchbanks PA, Liff JM et al (2006) Relationship between established breast cancer risk factors and risk of seven different histologic types of invasive breast cancer. Cancer Epidemiol Biomarkers Prev 15(5):946–954CrossRefGoogle Scholar
  39. 39.
    Kotsopoulos J, Chen WY, Gates MA, Tworoger SS, Hankinson SE, Rosner BA (2010) Risk factors for ductal and lobular breast cancer: results from the Nurses’ Health Study. Breast Cancer Res 12(6):R106CrossRefGoogle Scholar
  40. 40.
    Newcomer LM, Newcomb PA, Potter JD, Yasui Y, Trentham-Dietz A, Storer BE et al (2003) Postmenopausal hormone therapy and risk of breast cancer by histologic type (United States). Cancer Causes Control 14(3):225–233CrossRefGoogle Scholar
  41. 41.
    Li CI, Daling JR, Haugen KL, Tang MT, Porter PL, Malone KE (2014) Use of menopausal hormone therapy and risk of ductal and lobular breast cancer among women 55–74 years of age. Breast Cancer Res Treat 145(2):481–489CrossRefGoogle Scholar
  42. 42.
    Jensen LF, Pedersen AF, Andersen B, Vedsted P (2012) Identifying specific non-attending groups in breast cancer screening: population-based registry study of participation and socio-demography. BMC Cancer. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Finkelstein MM (2002) Preventive screening: what factors influence testing? Can Fam Physician 48:1494–1501PubMedPubMedCentralGoogle Scholar
  44. 44.
    Akinyemiju T, Ogunsina K, Sakhuja S, Ogbhodo V, Braithwaite D (2016) Life-course socioeconomic status and breast and cervical cancer screening: analysis of the WHO’s study on global ageing and adult health (SAGE). BMJ Open. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Damiani G, Federico B, Basso D, Ronconi A, Bianchi CB, Anzellotti GM et al (2012) Socioeconomic disparities in the uptake of breast and cervical cancer screening in Italy: a cross sectional study. BMC Public Health CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hofvind S, Sakshaug S, Ursin G, Graff-Iversen S (2012) Breast cancer incidence trends in Norway: explained by hormone therapy or mammographic screening? Int J Cancer 130(12):2930–2938CrossRefGoogle Scholar
  47. 47.
    Møller B, Weedon- Fekjær H, Hakulinen T, Tryggvadóttir L, Storm HH, Talbäck M et al (2005) The influence of mammographic screening on national trends in breast cancer incidence. Eur J Cancer Prev 14(2):117–128CrossRefGoogle Scholar
  48. 48.
    Stevens RG, Davis S (1996) The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 104(Suppl. 1):135–140PubMedPubMedCentralGoogle Scholar
  49. 49.
    Pukkala E, Ojamo M, Rudanko SL, Stevens RG, Verkasalo PK (2006) Does incidence of breast cancer and prostate cancer decrease with increasing degree of visual impairment. Cancer Causes Control 17(4):573–576CrossRefGoogle Scholar
  50. 50.
    Hansen J (2017) Night shift work and risk of breast cancer. Curr Environ Health Rep 4(3):325–339CrossRefGoogle Scholar
  51. 51.
    Yuan X, Zhu C, Wang M, Mo F, Du W, Ma X (2018) Night shift work increases the risks of multiple primary cancers in women: a systematic review and meta-analysis of 61 articles. Cancer Epidemiol Biomark Prev 27(1):25–40CrossRefGoogle Scholar
  52. 52.
    Ijaz S, Verbeek J, Seidler A, Lindbohm ML, Ojajarvi A, Orsini N et al (2013) Night-shift work and breast cancer: a systematic review and meta-analysis. Scand J Work Environ Health 39(5):431–447CrossRefGoogle Scholar
  53. 53.
    Åkerstedt T, Knutsson A, Narusyte J, Svedberg P, Kecklund G, Alexanderson K (2015) Night work and breast cancer in women: a Swedish cohort study. BMJ Open. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kojo K, Pukkala E, Auvinen A (2005) Breast cancer risk among Finnish cabin attendants: a nested case-control study. Occup Environ Med 62(7):488–493CrossRefGoogle Scholar
  55. 55.
    Lie JA, Kjuus H, Zienolddiny S, Haugen A, Stevens RG, Kjaerheim K (2011) Night work and breast cancer risk among Norwegian nurses: assessment by different exposure metrics. Am J Epidemiol 173(11):1272–1279CrossRefGoogle Scholar
  56. 56.
    Hansen J, Stevens RG (2012) Case-control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur J Cancer 48(11):1722–1729CrossRefGoogle Scholar
  57. 57.
    Rennix CP, Quinn MM, Amoroso PJ, Eisen EA, Wegman DH (2005) Risk of breast cancer among enlisted Army women occupationally exposed to volatile organic compounds. Am J Ind Med 48(3):157–167CrossRefGoogle Scholar
  58. 58.
    Hansen J, Lassen CF (2012) Nested case-control study of night shift work and breast cancer risk among women in the Danish military. Occup Environ Med 69(8):551–556. CrossRefPubMedGoogle Scholar
  59. 59.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2000) Ionizing radiation, part 1: X- and gamma radiation, and neutrons. IARC Monogr Eval Carcinog Risks Hum 75:1–459Google Scholar
  60. 60.
    Chou LB, Chandran S, Harris AH, Tung J, Butler LM (2012) Increased breast cancer prevalence among female orthopedic surgeons. J Womens Health (Larchmt) 21(6):683–689CrossRefGoogle Scholar
  61. 61.
    Weiderpass E, Pukkala E, Kauppinen T, Mutanen P, Paakkulainen H, Vasama-Neuvonen K et al (1999) Breast cancer and occupational exposures in women in Finland. Am J Ind Med 36(1):48–53CrossRefGoogle Scholar
  62. 62.
    Jartti P, Pukkala E, Uitti J, Auvinen A (2006) Cancer incidence among physicians occupationally exposed to ionizing radiation in Finland. Scand J Work Environ Health 32(5):368–373CrossRefGoogle Scholar
  63. 63.
    Gustavsson P, Andersson T, Gustavsson A, Reuterwall C (2017) Cancer incidence in female laboratory employees: extended follow-up of a Swedish cohort study. Occup Environ Med 74(11):823–826CrossRefGoogle Scholar
  64. 64.
    Hansen J (1999) Breast cancer risk among relatively young women employed in solvent-using industries. Am J Ind Med 36(1):43–47CrossRefGoogle Scholar
  65. 65.
    Band PR, Le ND, Fang R, Deschamps M, Gallagher RP, Yang P (2000) Identification of occupational cancer risks in British Columbia: a population-based case-control study of 995 incident breast cancer cases by menopausal status, controlling for confounding factors. J Occup Environ Med 42(3):284–310CrossRefGoogle Scholar
  66. 66.
    McElroy JA, Egan KM, Titus-Ernstoff L, Anderson HA, Trentham-Dietz A, Hampton JM et al (2007) Occupational exposure to electromagnetic field and breast cancer risk in a large, population-based, case-control study in the United States. J Occup Environ Med 49(3):266–274CrossRefGoogle Scholar
  67. 67.
    Forssen UM, Rutqvist LE, Ahlbom A, Feychting M (2005) Occupational magnetic fields and female breast cancer: a case-control study using Swedish population registers and new exposure data. Am J Epidemiol 161(3):250–259CrossRefGoogle Scholar
  68. 68.
    Lynge E, Rix BA, Villadsen E, Andersen I, Hink M, Olsen E et al (1995) Cancer in printing workers in Denmark. Occup Environ Med 52(11):738–744CrossRefGoogle Scholar
  69. 69.
    Brophy JT, Keith MM, Watterson A, Park R, Gilbertson M, Maticka-Tyndale E et al (2012) Breast cancer risk in relation to occupations with exposure to carcinogens and endocrine disruptors: a Canadian case-control study. Environ Health. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Snedeker SM (2001) Pesticides and breast cancer risk: a review of DDT, DDE, and dieldrfSIRin. Environ Health Perspect 109(Suppl. 1):35–47PubMedPubMedCentralGoogle Scholar
  71. 71.
    Adami HO, Lipworth L, Titus-Ernstoff L, Hsieh CC, Hanberg A, Ahlborg U et al (1995) Organochlorine compounds and estrogen-related cancers in women. Cancer Causes Control 6(6):551–566CrossRefGoogle Scholar
  72. 72.
    Fernandez SV, Russo J (2010) Estrogen and xenoestrogens in breast cancer. Toxicol Pathol 38(1):110–122CrossRefGoogle Scholar
  73. 73.
    Macon MB, Fenton SE (2013) Endocrine disruptors and the breast: early life effects and later life disease. J Mammary Gland Biol Neoplasia 18(1):43–61CrossRefGoogle Scholar
  74. 74.
    Lemarchand C, Tual S, Boulanger M, Levêque-Morlais N, Perrier S, Clin B et al (2016) O14-4: breast cancer risk among postmenopausal women in the agriculture and cancer cohort. Occup Environ Med 73(Suppl 1):A27Google Scholar
  75. 75.
    Pukkala E (1995) Cancer risk by social class and occupation: a survey of 109,000 cancer cases among Finns of working age. In: Wahrendorf J (ed) Contributions to epidemiology and biostatistics, vol 7. Karger, BaselGoogle Scholar
  76. 76.
    Johnsson A, Broberg P, Johnsson A, Tornberg AB, Olsson H (2017) Occupational sedentariness and breast cancer risk. Acta Oncol 56(1):75–80CrossRefGoogle Scholar
  77. 77.
    Luoto R, Latikka P, Pukkala E, Hakulinen T, Vihko V (2000) The effect of physical activity on breast cancer risk: a cohort study of 30,548 women. Eur J Epidemiol 16:973–980CrossRefGoogle Scholar
  78. 78.
    Rintala P, Pukkala E, Läärä E, Vihko V (2003) Physical activity and breast cancer risk among female physical education and language teachers: a 34-year follow-up. Int J Cancer 107:268–270CrossRefGoogle Scholar
  79. 79.
    Kauppinen T, Heikkilä P, Plato N, Woldbaek T, Lenvik K, Hansen J et al (2009) Construction of job-exposure matrices for the Nordic Occupational Cancer Study (NOCCA). Acta Oncol 48(5):791–800CrossRefGoogle Scholar
  80. 80.
    Pukkala E, Engholm G, Højsgaard Schmidt LK, Storm H, Khan S, Lambe M, Pettersson D, Ólafsdóttir E, Tryggvadóttir L, Hakanen T, Malila N, Virtanen A, Johannesen TB, Larønningen S, Ursin G (2018) Similarities and differences of the Nordic cancer registries: an overview of their procedures and data comparability. Acta Oncol 57:440–455CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sushmita Katuwal
    • 1
    Email author
  • Jan Ivar Martinsen
    • 2
  • Kristina Kjaerheim
    • 2
  • Pär Sparen
    • 6
  • Laufey Tryggvadottir
    • 7
    • 8
  • Elsebeth Lynge
    • 9
  • Elisabete Weiderpass
    • 2
    • 3
    • 4
    • 5
    • 6
  • Eero Pukkala
    • 1
    • 10
  1. 1.Faculty of Social SciencesUniversity of TampereTampereFinland
  2. 2.Department of Research, Cancer Registry of NorwayInstitute of Population-Based Cancer ResearchOsloNorway
  3. 3.Department of Community Medicine, Faculty of Health SciencesUniversity of TromsøTromsøNorway
  4. 4.Genetic Epidemiology GroupFolkhälsan Research CentreHelsinkiFinland
  5. 5.Faculty of MedicineHelsinki UniversityHelsinkiFinland
  6. 6.Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
  7. 7.Icelandic Cancer RegistryReykjavikIceland
  8. 8.Faculty of MedicineUniversity of IcelandReykjavikIceland
  9. 9.Centre for Epidemiology and Screening, Institute of Public HealthUniversity of CopenhagenCopenhagenDenmark
  10. 10.Finnish Cancer RegistryInstitute for Statistical and Epidemiological Cancer ResearchHelsinkiFinland

Personalised recommendations