Skip to main content

Advertisement

Log in

The protective effect of coffee consumption on cutaneous melanoma risk and the role of GSTM1 and GSTT1 polymorphisms

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purposes

The authors examined the association between coffee consumption and cutaneous melanoma and the implication of GSTM1 and GSTT1 polymorphisms.

Methods

A hospital-based case–control study was conducted in the inpatient wards of IDI-San Carlo Rome, Italy, including 304 incident cases of cutaneous melanoma and 305 controls. Information on socio-demographic characteristics, medical history, smoking, sun exposure, pigmentary characteristics and diet was collected for all subjects. Within the study, individual patterns at two polymorphic genes (GSTM1 and GSTT1) belonging to glutathione S-transferases family were investigated in 188 cases of cutaneous melanoma and 152 controls. Logistic regression was the method used to estimate odds ratio and 95 % confidence intervals.

Results

High frequency of coffee drinking (>once daily), compared with low-frequency consumption of coffee (≤7 times weekly) was associated with a protective effect for cutaneous melanoma (OR 0.46; 95 % CI 0.31–0.68) after adjusting for sex, age, education, hair colour, common nevi, skin phototype, and sunburn episodes in childhood. When stratified by GSTM1 and GSTT1 genotype, the protective effect of coffee was extremely high for subjects with both GSTM1 and GSTT1 null polymorphisms (OR 0.01; 95 % CI 0.0003–0.54).

Conclusions

Our results show a protective effect of coffee consumption for cutaneous melanoma, in particular for those with homozygous deletion for GSTM1 and GSTT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Vries E, Coebergh JW (2005) Melanoma incidence has risen in Europe. BMJ 331(7518):698

    Article  PubMed  Google Scholar 

  2. Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 4:45–60

    Article  Google Scholar 

  3. Curtin JA, Fridlyand J, Kageshita T et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  PubMed  CAS  Google Scholar 

  4. Fortes C, de Vries E (2008) Nonsolar occupational risk factors for cutaneous melanoma. Int J Dermatol 47:319–328

    Article  PubMed  Google Scholar 

  5. International Agency for Research on Cancer (1991) IARC Mongraph on the evaluation of the carcinogenic risks to humans. In: Coffee, tea, mate, methylxanthines and methylglyoxal, vol 51. IARC, Lyon, France

  6. Je Y, Giovannucci E (2012) Coffee consumption and risk of endometrial cancer: findings from a large up-to-date meta-analysis. Int J Cancer 7:1700–1710

    Article  Google Scholar 

  7. Galeone C, Turati F, La Vecchia C et al (2010) Coffee consumption and risk of colorectal cancer: a meta-analysis of case-control. Cancer Causes Control 2:1949–1959

    Article  Google Scholar 

  8. Turati F, Galeone C, Edefonti V et al (2012) A meta-analysis of coffee consumption and pancreatic cancer. Ann Oncol 2:311–318

    Article  Google Scholar 

  9. Braem MG, Onland-Moret NC, Schouten LJ et al (2012) Coffee and tea consumption and the risk of ovarian cancer: a prospective cohort study and updated meta-analysis. Am J Clin Nutr 95:1172–1181

    Article  PubMed  CAS  Google Scholar 

  10. Veierød MB, Thelle DS, Laake P (1997) Diet and risk of cutaneous malignant melanoma: a prospective study of 50,757 Norwegian men and women. Int J Cancer 71:600–604

    Article  PubMed  Google Scholar 

  11. Osterlind A, Tucker MA, Stone BJ et al (1988) The Danish case-control study of cutaneous malignant melanoma. IV. No association with nutritional factors, alcohol, smoking or hair dyes. Int J Cancer 42:825–828

    Article  PubMed  CAS  Google Scholar 

  12. Green A, Bain C, McLennan R et al (1986) Risk factors for cutaneous melanoma in Queensland. Rec Results Cancer Res 102:76–97

    Article  CAS  Google Scholar 

  13. Naldi L, Gallus S, Tavani A et al (2004) Oncology Study Group of the Italian Group for Epidemiologic Research in Dermatology. Risk of melanoma and vitamin A coffee and alcohol: a case-control study from Italy. Eur J Cancer Prev 13:503–508

    Article  PubMed  CAS  Google Scholar 

  14. Dong LM, Potter JD, White E et al (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299:2423–2436

    Article  PubMed  CAS  Google Scholar 

  15. Parl FF (2005) Glutathione S-transferase genotypes and cancer risk. Cancer Lett 221:123–129

    Article  PubMed  CAS  Google Scholar 

  16. Huber WW, Parzefall W (2005) Modification of N-acetyltransferases and glutathione S-transferases by coffee components: possible relevance for cancer risk. Methods Enzymol 401:307–341

    Article  PubMed  CAS  Google Scholar 

  17. English DR, Mac Lennan R (1990) Epidemiological studies of melanocytic naevi protocol for identifying and recording naevi. IARC internal report no 90/002. International Agency for Research on Cancer, Lyon

  18. Freedberg IM et al (eds) (1999) Fitzpatrick’s dermatology in general medicine, 5th edn. McGraw-Hill, New York

    Google Scholar 

  19. Leffondré K, Abrahamowicz M, Siemiatycki J et al (2002) Modeling smoking history: a comparison of different approaches. Am J Epidemiol 156:813–823

    Article  PubMed  Google Scholar 

  20. Fortes C, Forastiere F, Farchi S et al (2003) The protective effect of the Mediterranean diet on lung cancer. Nutr Cancer 46:30–37

    Article  PubMed  Google Scholar 

  21. Gao Y, Zhang Q (1999) Polimorphisms of the GSTM1 and CYP2D6 genes associated with susceptibility to lung cancer in Chinese. Mutat Res 444:441–449

    Article  PubMed  CAS  Google Scholar 

  22. Fortes C, Mastroeni S, Melchi F et al (2007) The association between residential pesticide use and cutaneous melanoma. Eur J Cancer 43:1066–1075

    Article  PubMed  CAS  Google Scholar 

  23. Denkert C, Kobel M, Berger S et al (2001) Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 61:303–308

    PubMed  CAS  Google Scholar 

  24. Tabolacci C, Lentini A, Provenzano B et al (2010) Similar antineoplastic effects of nimesulide, a selective COX-2 inhibitor, and prostaglandin E1 on B16-F10 murine melanoma cells. Melanoma Res 20:273–279

    Article  PubMed  CAS  Google Scholar 

  25. Kang NJ, Lee KW, Shin BJ et al (2009) Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 30:321–330

    Article  PubMed  CAS  Google Scholar 

  26. Lee WJ, Zhu BT (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27:269–277

    Article  PubMed  CAS  Google Scholar 

  27. Lee KJ, Jeong HG (2007) Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol Lett 173:80–87

    Article  PubMed  CAS  Google Scholar 

  28. Yamada Y, Yasui H, Sakurai H (2006) Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochem Photobiol 82:1668–1676

    PubMed  CAS  Google Scholar 

  29. Armstrong BK, White E, Saracci R (1992) Principles of exposure measurement in epidemiology. Oxford University Press, New York

    Google Scholar 

  30. Lampe JW (2009) Interindividual differences in response to plant-based diets: implications for cancer risk. Am J Clin Nutr 89:1553S–1557S

    Article  PubMed  CAS  Google Scholar 

  31. Mössner R, Anders N, König IR et al (2007) Variations of the melanocortin-1 receptor and the glutathione-S transferase T1 and M1 genes in cutaneous malignant melanoma. Arch Dermatol Res 298:371–379

    Article  PubMed  Google Scholar 

  32. Chan EC, Lam SY, Fu KH et al (2005) Polymorphisms of the GSTM1, GSTP1, MPO, XRCC1, and NQO1 genes in Chinese patients with non-small cell lung cancers: relationship with aberrant promoter methylation of the CDKN2A and RARB genes. Cancer Genet Cytogenet 162:10–20

    Article  PubMed  CAS  Google Scholar 

  33. Ibarrola-Villava M, Martin-Gonzalez M, Lazaro P et al (2012) Role of glutathione S-transferases in melanoma susceptibility: association with GSTP1 rs1695 polymorphism. Br J Dermatol 166:1176–1183

    Article  PubMed  CAS  Google Scholar 

  34. Heagerty A, Smith A, English J et al (1994) Glutathione S-transferase GSTM1 phenotypes and protection against cutaneous tumours. Lancet 343:266–268

    Article  PubMed  CAS  Google Scholar 

  35. Kanetsky PA, Holmes R, Walker A et al (2001) Interaction of glutathione S-transferase M1 and T1 genotypes and malignant melanoma. Cancer Epidemiol Biomark Prev 10:509–513

    CAS  Google Scholar 

  36. Fortes C, Mastroeni S, Boffetta P et al (2011) Polymorphisms of GSTM1 and GSTT1, sun exposure and the risk of melanoma: a case–control study. Acta Derm Venereol 91:284–289

    Article  PubMed  Google Scholar 

  37. Palli D, Masala G, Peluso M et al (2004) The effects of diet on DNA bulky adduct levels are strongly modified by GSTM1 genotype: a study on 634 subjects. Carcinogenesis 25:577–584

    Article  PubMed  CAS  Google Scholar 

  38. Lampe JW, Chen C, Li S et al (2000) Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiol Biomarkers Prev 9:787–793

    PubMed  CAS  Google Scholar 

  39. Epplein M, Wilkens LR, Tiirikainen M et al (2009) Urinary isothiocyanates; glutathione S-transferase M1, T1, and P1 polymorphisms; and risk of colorectal cancer: the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 18:314–320

    Article  PubMed  CAS  Google Scholar 

  40. Gervasini G, San Jose C, Carrillo JA et al (2010) GST polymorphisms interact with dietary factors to modulate lung cancer risk: study in a high-incidence area. Nutr Cancer 62:750–758

    Article  PubMed  CAS  Google Scholar 

  41. Borst L, Buchard A, Rosthøj S et al (2012) Gene dose effects of GSTM1, GSTT1 and GSTP1 polymorphisms on outcome in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 34:38–42

    Article  PubMed  CAS  Google Scholar 

  42. Coles BF, Kadlubar FF (2003) Detoxification of electrophilic compounds by glutathione S-transferase catalysis:determinants of individual response to chemical carcinogens and chemotherapeutic drugs. BioFactors 17:115–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Istituto Dermopatico dell’Immacolata, Istituto di Ricovero a Carattere Scientifico (Progetto Ricerca Corrente 2011, Italian Ministry of Health) and by the Consulenza Tecnica Accertamento Rischi e Prevenzione—Istituto Nazionale per l’Assicurazione contro gli Infortuni sul lavoro (INAIL).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Fortes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortes, C., Mastroeni, S., Boffetta, P. et al. The protective effect of coffee consumption on cutaneous melanoma risk and the role of GSTM1 and GSTT1 polymorphisms. Cancer Causes Control 24, 1779–1787 (2013). https://doi.org/10.1007/s10552-013-0255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-013-0255-4

Keywords

Navigation