Cancer Causes & Control

, Volume 24, Issue 4, pp 783–793 | Cite as

Childhood acute leukemia, maternal beverage intake during pregnancy, and metabolic polymorphisms

  • Audrey Bonaventure
  • Jérémie Rudant
  • Stéphanie Goujon-Bellec
  • Laurent Orsi
  • Guy Leverger
  • André Baruchel
  • Yves Bertrand
  • Brigitte Nelken
  • Marlène Pasquet
  • Gérard Michel
  • Nicolas Sirvent
  • Pierre Bordigoni
  • Stéphane Ducassou
  • Xavier Rialland
  • Diana Zelenika
  • Denis Hémon
  • Jacqueline Clavel
Original paper



This study aimed to analyze the associations between childhood acute leukemia (AL) and maternal caffeinated beverage consumption during pregnancy, and to explore interactions between caffeinated and alcoholic beverage consumption and polymorphisms of enzymes involved in caffeine and ethanol metabolisms.


The data were generated by the French ESCALE study, which included 764 AL cases and 1,681 controls in 2003–2004. The case and control mothers were interviewed on their consumption habits during pregnancy using a standardized questionnaire. Genotypes of the candidate alleles (NAT2*5 rs1801280, ADH1C*2 rs698 and rs1693482, CYP2E1*5 rs2031920 and rs3813867) were obtained using high-throughput genotyping and imputation data for 493 AL cases and 549 controls with at least two grandparents born in Europe.


Maternal regular coffee consumption during pregnancy was associated with childhood AL (OR = 1.2 [1.0–1.5], p = 0.02); the odds ratios increased linearly with daily intake (p for trend <0.001; >2 cups per day vs. no or less than 1 cup per week: AL: OR = 1.6 [1.2–2.1], lymphoblastic AL: OR = 1.5 [1.1–2.0], myeloblastic AL: OR = 2.4 [1.3–4.3]). The association was slightly more marked for children born to non-smoking mothers. Lymphoblastic AL was also associated with cola soda drinking (OR = 1.3 [1.0–1.5], p = 0.02). No significant gene–environment interactions with coffee, tea, cola soda, or alcohol drinking were observed.


This study provides additional evidence that maternal coffee consumption during pregnancy may be associated with childhood AL. Coffee consumption is a prevalent habit and its potential involvement in childhood AL needs to be considered further.


Childhood leukemia Coffee Alcohol Pregnancy Gene Interaction 



Acute leukemia


Acute lymphoblastic leukemia


Acute myeloblastic leukemia


Utah residents with Northern and Western European ancestry from the CEPH collection


Centre d’Etude du Polymorphisme Humain


Cytochrome P450 2E1


N-acetyltransferase 2


Alcohol dehydrogenase


  1. 1.
    Menegaux F, Steffen C, Bellec S, Baruchel A, Lescoeur B, Leverger G, Nelken B, Philippe N, Sommelet D, Hemon D, Clavel J (2005) Maternal coffee and alcohol consumption during pregnancy, parental smoking and risk of childhood acute leukaemia. Cancer Detect Prev 29(6):487–493PubMedCrossRefGoogle Scholar
  2. 2.
    Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL (1996) Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children’s Cancer Group. Cancer Causes Control 7(6):581–590PubMedCrossRefGoogle Scholar
  3. 3.
    Petridou E, Trichopoulos D, Kalapothaki V, Pourtsidis A, Kogevinas M, Kalmanti M, Koliouskas D, Kosmidis H, Panagiotou JP, Piperopoulou F, Tzortzatou F (1997) The risk profile of childhood leukaemia in Greece: a nationwide case–control study. Br J Cancer 76(9):1241–1247PubMedCrossRefGoogle Scholar
  4. 4.
    Menegaux F, Ripert M, Hemon D, Clavel J (2007) Maternal alcohol and coffee drinking, parental smoking and childhood leukaemia: a French population-based case–control study. Paediatr Perinat Epidemiol 21(4):293–299PubMedCrossRefGoogle Scholar
  5. 5.
    Milne E, Royle JA, Bennett LC, de Klerk NH, Bailey HD, Bower C, Miller M, Attia J, Scott RJ, Kirby M, Armstrong BK (2011) Maternal consumption of coffee and tea during pregnancy and risk of childhood ALL: results from an Australian case–control study. Cancer Causes Control 22(2):207–218. doi:10.1007/s10552-010-9688-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Arylamine N-acetyltransferase Gene Nomenclature Committee. Human NAT2 alleles/haplotypes (2010)
  7. 7.
    Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A, Yu VL, Grewal R (1997) Human acetyltransferase polymorphisms. Mutat Res 376(1–2):61–70PubMedGoogle Scholar
  8. 8.
    Zanrosso CW, Emerenciano M, Goncalves BA, Faro A, Koifman S, Pombo-de-Oliveira MS (2010) N-acetyltransferase 2 polymorphisms and susceptibility to infant leukemia with maternal exposure to dipyrone during pregnancy. Cancer Epidemiol Biomarkers Prev 19(12):3037–3043. doi:10.1158/1055-9965.epi-10-0508 PubMedCrossRefGoogle Scholar
  9. 9.
    Zanrosso CW, Emerenciano M, Faro A, de Aguiar Goncalves BA, Mansur MB, Pombo-de-Oliveira MS (2011) Genetic variability in N-Acetyltransferase 2 gene determines susceptibility to childhood lymphoid or myeloid leukemia in Brazil. Leuk Lymphoma. doi:10.3109/10428194.2011.619605
  10. 10.
    Bonaventure A, Goujon-Bellec S, Rudant J, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken B, Pasquet M, Michel G, Sirvent N, Bordigoni P, Ducassou S, Rialland X, Zelenika D, Hemon D, Clavel J (2012) Maternal smoking during pregnancy, genetic polymorphisms of metabolic enzymes, and childhood acute leukemia: the ESCALE Study (SFCE). Cancer Causes Control 23(2):329–345. doi:10.1007/s10552-011-9882-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Krajinovic M, Richer C, Sinnett H, Labuda D, Sinnett D (2000) Genetic polymorphisms of N-acetyltransferases 1 and 2 and gene–gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 9(6):557–562PubMedGoogle Scholar
  12. 12.
    Latino-Martel P, Chan DS, Druesne-Pecollo N, Barrandon E, Hercberg S, Norat T (2010) Maternal alcohol consumption during pregnancy and risk of childhood leukemia: systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 19(5):1238–1260PubMedCrossRefGoogle Scholar
  13. 13.
    Edenberg HJ (2007) The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30(1):5–13PubMedGoogle Scholar
  14. 14.
    IARC (1999) Metabolic polymorphisms & susceptibility to cancer, chap 3. IARC monograph 148, IARC, LyonGoogle Scholar
  15. 15.
    Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U (2006) Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol 81(3):162–170. doi:10.1002/ajh.20434 PubMedCrossRefGoogle Scholar
  16. 16.
    Bolufer P, Collado M, Barragan E, Cervera J, Calasanz MJ, Colomer D, Roman-Gomez J, Sanz MA (2007) The potential effect of gender in combination with common genetic polymorphisms of drug-metabolizing enzymes on the risk of developing acute leukemia. Haematologica 92(3):308–314PubMedCrossRefGoogle Scholar
  17. 17.
    Canalle R, Burim RV, Tone LG, Takahashi CS (2004) Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen 43(2):100–109. doi:10.1002/em.20003 PubMedCrossRefGoogle Scholar
  18. 18.
    Krajinovic M, Sinnett H, Richer C, Labuda D, Sinnett D (2002) Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 97(2):230–236PubMedCrossRefGoogle Scholar
  19. 19.
    Ulusoy G, Adali O, Tumer TB, Sahin G, Gozdasoglu S, Arinc E (2007) Significance of genetic polymorphisms at multiple loci of CYP2E1 in the risk of development of childhood acute lymphoblastic leukemia. Oncology 72(1–2):125–131PubMedCrossRefGoogle Scholar
  20. 20.
    Infante-Rivard C, Krajinovic M, Labuda D, Sinnett D (2002) Childhood acute lymphoblastic leukemia associated with parental alcohol consumption and polymorphisms of carcinogen-metabolizing genes. Epidemiology 13(3):277–281PubMedCrossRefGoogle Scholar
  21. 21.
    Rudant J, Orsi L, Menegaux F, Petit A, Baruchel A, Bertrand Y, Lambilliotte A, Robert A, Michel G, Margueritte G, Tandonnet J, Mechinaud F, Bordigoni P, Hemon D, Clavel J (2010) Childhood acute leukemia, early common infections, and allergy: the ESCALE Study. Am J Epidemiol 172(9):1015–1027. doi:10.1093/aje/kwq233 PubMedCrossRefGoogle Scholar
  22. 22.
    Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5(6):e1000529. doi:10.1371/journal.pgen.1000529 PubMedCrossRefGoogle Scholar
  23. 23.
    Rudant J, Menegaux F, Leverger G, Baruchel A, Lambilliotte A, Bertrand Y, Patte C, Pacquement H, Verite C, Robert A, Michel G, Margueritte G, Gandemer V, Hemon D, Clavel J (2008) Childhood hematopoietic malignancies and parental use of tobacco and alcohol: the ESCALE study (SFCE). Cancer Causes Control 19(10):1277–1290PubMedCrossRefGoogle Scholar
  24. 24.
    Blondel B, Breart G, du Mazaubrun C, Badeyan G, Wcislo M, Lordier A, Matet N (1997) The perinatal situation in France. Trends between 1981 and 1995. J Gynecol Obstet Biol Reprod (Paris) 26(8):770–780Google Scholar
  25. 25.
    Blondel B, Norton J, du Mazaubrun C, Breart G (2001) Development of the main indicators of perinatal health in metropolitan France between 1995 and 1998. Results of the national perinatal survey. J Gynecol Obstet Biol Reprod (Paris) 30(6):552–564Google Scholar
  26. 26.
    Blondel B, Supernant K, Du Mazaubrun C, Breart G (2006) Trends in perinatal health in metropolitan France between 1995 and 2003: results from the National Perinatal Surveys. J Gynecol Obstet Biol Reprod (Paris) 35(4):373–387CrossRefGoogle Scholar
  27. 27.
    Ferguson LR, Philpott M (2008) Nutrition and mutagenesis. In: Annual review of nutrition, vol 28. Annual review of nutrition. Annual Reviews, Palo Alto, pp 313–329. doi:10.1146/annurev.nutr.28.061807.155449
  28. 28.
    IARC (1991) IARC monographs on the evaluation of carcinogenic risks to humans, vol 51. In: Coffee, tea, mate, methylxanthines and methylglyoxal. IARC, Lyon, pp 291–390Google Scholar
  29. 29.
    McCarver DG, Hines RN (2002) The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 300(2):361–366PubMedCrossRefGoogle Scholar
  30. 30.
    Hines RN, McCarver DG (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300(2):355–360PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Audrey Bonaventure
    • 1
    • 2
  • Jérémie Rudant
    • 1
    • 2
    • 3
  • Stéphanie Goujon-Bellec
    • 1
    • 2
    • 3
  • Laurent Orsi
    • 1
    • 2
  • Guy Leverger
    • 4
    • 5
  • André Baruchel
    • 6
    • 7
  • Yves Bertrand
    • 8
  • Brigitte Nelken
    • 9
    • 10
  • Marlène Pasquet
    • 11
  • Gérard Michel
    • 12
  • Nicolas Sirvent
    • 13
  • Pierre Bordigoni
    • 14
  • Stéphane Ducassou
    • 15
  • Xavier Rialland
    • 16
    • 17
  • Diana Zelenika
    • 18
  • Denis Hémon
    • 1
    • 2
  • Jacqueline Clavel
    • 1
    • 2
    • 3
  1. 1.Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018Environmental epidemiology of Cancer GroupVillejuifFrance
  2. 2.Univ Paris-Sud, UMRS 1018VillejuifFrance
  3. 3.RNHE, National Registry of Childhood Hematopoietic MalignanciesVillejuifFrance
  4. 4.AP-HP, Hôpital Armand TrousseauParisFrance
  5. 5.Université Paris 6 Pierre et Marie CurieParisFrance
  6. 6.AP-HP, Hôpital Robert DebréParisFrance
  7. 7.Université Paris 7ParisFrance
  8. 8.Institut d’Hémato-Oncologie PédiatriqueLyonFrance
  9. 9.Hôpital Jeanne de Flandre, CHRULilleFrance
  10. 10.Université Lille Nord de FranceLilleFrance
  11. 11.Hôpital des EnfantsToulouseFrance
  12. 12.AP-HM, Hôpital la TimoneMarseilleFrance
  13. 13.Hôpital Arnaud de VilleneuveMontpellierFrance
  14. 14.CHU de NancyVandoeuvreFrance
  15. 15.Hematology and Oncology, Children’s Hospital, PellegrinBordeaux University HospitalBordeauxFrance
  16. 16.Hôpital Mère-Enfant, CHU-NantesNantesFrance
  17. 17.CHU d’AngersAngersFrance
  18. 18.Commissariat à l’Energie Atomique (CEA) Genomics Institute-Centre National de GénotypageEvry CedexFrance

Personalised recommendations