Skip to main content
Log in

Dairy intake and 1,25-dihydroxyvitamin D levels in men at high risk for prostate cancer

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

Dairy food intake has been associated with prostate cancer in previous work, but the mechanism by which this occurs is unknown. Dairy calcium may suppress circulating levels of potentially cancer-protective 1,25-hydroxyvitamin D (1,25(OH)2D). We examined the associations of dairy, milk, calcium, and vitamin D intake with plasma 1,25(OH)2D levels among 296 men (194 black, 102 non-black) enrolled in a high risk program for prostate cancer from 10/96 to 10/07.

Methods

All participants completed diet and health history questionnaires and provided plasma samples, which were assessed for levels of 25-hydroxyvitamin D and 1,25(OH)2D. We used multivariate linear regression to examine associations with 1,25(OH)2D.

Results

After adjustment for age, race, energy intake, BMI, and alcohol intake, we observed no associations for any of our variables of interest with 1,25(OH)2D, or any meaningful differences in estimates by race or vitamin D status.

Conclusion

Our findings, in a sample including a large proportion of black participants, do not confirm previous findings showing an inverse association between calcium intake and 1,25(OH)2D levels. As such, they suggest that future work should explore other mechanisms by which dairy foods and calcium might increase prostate cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gao X, LaValley MP, Tucker KL (2005) Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst 97(23):1768–1777

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz GG, Hulka BS (1990) Is vitamin D deficiency a risk factor for prostate cancer? Anticancer Res 10:1307–1312

    CAS  PubMed  Google Scholar 

  3. Giovannucci EL (1998) Dietary influences of 1,25(OH)2 vitamin D in relation to prostate cancer: a hypothesis. Cancer Causes Control 9:567–582

    Article  CAS  PubMed  Google Scholar 

  4. Holick MF (2000) Calcium and vitamin D: diagnostics and therapeutics. Clin Lab Med 20:569–590

    CAS  PubMed  Google Scholar 

  5. Bruner DW, Baffoe-Bonnie A, Miller S, Diefenbach M, Tricoli JV, Daly M et al (1999) Prostate cancer risk assessment program. A model for the early detection of prostate cancer. Oncology 13(3):325–334

    CAS  PubMed  Google Scholar 

  6. Willett WC, Sampson L, Browne ML, Stampfer MJ, Rosner B, Hennekens CH et al (1988) The use of a self-administered questionnaire to assess diet four years in the past. Am J Epidemiol 127:188–199

    CAS  PubMed  Google Scholar 

  7. Freedman DM, Zahm SH, Dosemeci M (1997) Residential and occupational exposure to sunlight and mortality from non-Hodgkin’s lymphoma: composite (threefold) case-control study. Br Med J 314:1451–1455

    CAS  Google Scholar 

  8. Freedman DM, Dosemeci M, Alavanja MC (2000) Mortality from multiple sclerosis and exposure to residential and occupational solar radiation: a case-control study based on death certificates. Occup Environ Med 57:418–421

    Article  CAS  PubMed  Google Scholar 

  9. Freedman DM, Dosemeci M, McGlynn K (2002) Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: a composite death certificate based case-control study. Occup Environ Med 59:257–262

    Article  CAS  PubMed  Google Scholar 

  10. Willett W, Stampfer M (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27

    CAS  PubMed  Google Scholar 

  11. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (1997) Dietary reference intakes for calcium, phosphorous, magnesium, vitamin D, and fluoride. National Academy Press, Washington

    Google Scholar 

  12. Nesby-O’Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW, Looker AC et al (2002) Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 76:187–192

    PubMed  Google Scholar 

  13. Jacques PF, Felson DT, Tucker KL, Mahnken B, Wilson PW, Rosenberg IH et al (1997) Plasma 25-hydroxyvitamin D and its determinants in an elderly population sample. Am J Clin Nutr 66:929–936

    CAS  PubMed  Google Scholar 

  14. Wang L, Whitlatch LW, Flanagan JN, Holick MF, Chen TC (2003) Vitamin D autocrine system and prostate cancer. Recent Results Cancer Res 164:223–237

    CAS  PubMed  Google Scholar 

  15. Giovannucci E, Liu Y, Stampfer MJ, Willett WC (2006) A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol Biomarkers Prev 15(2):203–210

    Article  CAS  PubMed  Google Scholar 

  16. Miller GJ (1999) Vitamin D and prostate cancer: biologic interactions and clinical potentials. Cancer Metastasis Rev 17:353–360

    Article  CAS  Google Scholar 

  17. Johnson CS, Hershberger PA, Trump DL (2002) Vitamin D-related therapies in prostate cancer. Cancer Metastasis Rev 21:147–158

    Article  CAS  PubMed  Google Scholar 

  18. Ahn J, Albanes D, Peters U, Schatzkin A, Lim U, Freedman M et al (2007) Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 16(12):2623–2630

    Article  CAS  PubMed  Google Scholar 

  19. Adams ND, Gray RW, Lemann J Jr (1979) The effects of oral CaCO3 loading and dietary calcium deprivation on plasma 1,25-dihydroxyvitamin D concentrations in healthy adults. J Clin Endocrinol Metab 48:1008–1016

    Article  CAS  PubMed  Google Scholar 

  20. Gascon-Barre M, D’Amour P, Dufresne L, Perreault JP (1985) Interrelationships between circulating vitamin D metabolites in normocalciuric and hypercalciuric renal stone formers. Ann Nutr Metab 29:289–296

    Article  CAS  PubMed  Google Scholar 

  21. Chan JM, Stampfer MJ, Ma J, GP H, Gaziano JM, Giovannucci EL (2001) Dairy products, calcium, and prostate cancer risk in the physicians’ health study. Am J Clin Nutr 74:549–554

    CAS  PubMed  Google Scholar 

  22. Chan JM, Pietinen P, Virtanen M, Malila N, Tangrea J, Albanes D et al (2000) Diet and prostate cancer risk in a cohort of smokers, with a specific focus on calcium and phosphorous (Finland). Cancer Causes Control 11:859–867

    Article  CAS  PubMed  Google Scholar 

  23. Martini L, Wood RJ (2002) Relative bioavailability of calcium-rich dietary sources in the elderly. Am J Clin Nutr 76:1345–1350

    CAS  PubMed  Google Scholar 

  24. Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF (1979) Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J Clin Invest 64(3):729–736

    Article  CAS  PubMed  Google Scholar 

  25. Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90(3):1519–1524

    Article  CAS  PubMed  Google Scholar 

  26. Baron JA, Beach M, Wallace K, Grau MV, Sandler RS, Mandel JS et al (2005) Risk of prostate cancer in a randomized clinical trial of calcium supplementation. Cancer Epidemiol Biomarkers Prev 14(3):586–589

    Article  CAS  PubMed  Google Scholar 

  27. Corder EH, Guess HA, Hulka BS, Friedman GD, Sadler M, Vollmer RT et al (1993) Vitamin D and prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiol Biomarkers Prev 2:467–472

    CAS  PubMed  Google Scholar 

  28. Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P (2000) Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels (Finland). Cancer Causes Control 11:847–852

    Article  CAS  PubMed  Google Scholar 

  29. Braun MM, Helzlsouer KJ, Hollis BW, Comstock GW (1995) Prostate cancer and prediagnostic levels of serum vitamin D metabolites (Maryland, United States). Cancer Causes Control 6:235–239

    Article  CAS  PubMed  Google Scholar 

  30. Gann PH, Ma J, Hennekens CH, Hollis BW, Haddad JG, Stampfer MJ (1996) Circulating vitamin D metabolites in relation to subsequent development of prostate cancer. Cancer Epidemiol Biomarkers Prev 5:121–126

    CAS  PubMed  Google Scholar 

  31. Nomura AMY, Stemmermann GN, Lee J, Kolonel LN, Chen TC, Turner A et al (1998) Serum vitamin D metabolite levels and the subsequent development of prostate cancer (Hawaii, United States). Cancer Causes Control 9:425–432

    Article  CAS  PubMed  Google Scholar 

  32. Zadshir A, Tareen N, Pan D, Norris K, Martins D (2005) The prevalence of hypovitaminosis D among US adults: data from the NHANES III. Ethn Dis 15(4 Suppl 5):97–101

    Google Scholar 

  33. Chan JM, Giovannucci E, Andersson SO, Yuen J, Adami HO, Wolk A (1998) Dairy products, calcium, phosphorous, vitamin D, and risk of prostate cancer (Sweden). Cancer Causes Control 9:559–566

    Article  CAS  PubMed  Google Scholar 

  34. Giovannucci E, Rimm EB, Wolk A, Ascherio A, Stampfer MJ, Colditz GA et al (1998) Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res 58:442–447

    CAS  PubMed  Google Scholar 

  35. Kristal AR, Cohen JH, Qu P, Stanford JL (2002) Associations of energy, fat, calcium, and vitamin D with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 11:719–725

    CAS  PubMed  Google Scholar 

  36. Tseng M, Breslow RA, Graubard BI, Ziegler RG (2005) Dairy, calcium, and vitamin D intakes and prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up Study cohort. Am J Clin Nutr 81(5):1147–1154

    CAS  PubMed  Google Scholar 

  37. Shankar K, Liu X, Singhal R, Chen JR, Nagarajan S, Badger TM et al (2008) Chronic ethanol consumption leads to disruption of vitamin D3 homeostasis associated with induction of renal 1,25 dihydroxyvitamin D3–24-hydroxylase (CYP24A1). Endocrinology 149(4):1748–1756

    Article  CAS  PubMed  Google Scholar 

  38. Subar AF, Thompson FE, Kipnis V, Midthune D, Hurwitz P, McNutt S et al (2001) Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol 154:1089–1099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the participants of the Prostate Cancer Risk Assessment Program at Fox Chase Cancer Center. We also thank Ms. Susan Raysor and Ms. JoEllen Weaver for their assistance in making the necessary datasets and samples available from the Prostate Cancer Risk Assessment Program; Dr. Cynthia Spittle for her assistance in facilitating transport of samples for vitamin D assays; and Dr. Mustafa Dosemeci for sharing his indices on residential and occupational sunlight exposure. Supported by grants R03 CA110892 and P30 CA006927 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Tseng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, M., Giri, V., Watkins-Bruner, D. et al. Dairy intake and 1,25-dihydroxyvitamin D levels in men at high risk for prostate cancer. Cancer Causes Control 20, 1947–1954 (2009). https://doi.org/10.1007/s10552-009-9389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-009-9389-9

Keywords

Navigation