Cancer Causes & Control

, Volume 20, Issue 8, pp 1509–1515 | Cite as

Consumption of sweet foods and breast cancer risk: a case–control study of women on Long Island, New York

  • Patrick T. BradshawEmail author
  • Sharon K. Sagiv
  • Geoffrey C. Kabat
  • Jessie A. Satia
  • Julie A. Britton
  • Susan L. Teitelbaum
  • Alfred I. Neugut
  • Marilie D. Gammon
Brief report


Several epidemiologic studies have reported a positive association between breast cancer risk and high intake of sweets, which may be due to an insulin-related mechanism. We investigated this association in a population-based case–control study of 1,434 cases and 1,440 controls from Long Island, NY. Shortly after diagnosis, subjects were interviewed in-person to assess potential breast cancer risk factors, and self-completed a modified Block food frequency questionnaire, which included 11 items pertaining to consumption of sweets (sweet beverages, added sugars, and various desserts) in the previous year. Using unconditional logistic regression models, we estimated the association between consumption of sweets and breast cancer. Consumption of a food grouping that included dessert foods, sweet beverages, and added sugars was positively associated with breast cancer risk [adjusted odds ratio (OR) comparing the highest to the lowest quartile: 1.27, 95% confidence interval (CI): 1.00–1.61]. The OR was slightly higher when only dessert foods were considered (OR: 1.55, 95% CI: 1.23–1.96). The association with desserts was stronger among pre-menopausal women (OR: 2.00, 95% CI: 1.32–3.04) than post-menopausal women (OR: 1.40, 95% CI: 1.07–1.83), although the interaction with menopause was not statistically significant. Our study indicates that frequent consumption of sweets, particularly desserts, may be associated with an increased risk of breast cancer. These results are consistent with other studies that implicate insulin-related factors in breast carcinogenesis.


Sweets consumption Insulin Breast cancer Estrogen receptor Progesterone receptor 



This work supported in part by National Cancer Institute and the National Institutes of Environmental Health and Sciences Grant nos. UO1CA/ES66572, P30ES10126, T32CA72319 and T32CA009330.


  1. 1.
    Augustin LS, Dal Maso L, La Vecchia C, Parpinel M, Negri E, Vaccarella S, Kendall CW, Jenkins DJ, Francesch S (2001) Dietary glycemic index and glycemic load, and breast cancer risk: a case-control study. Ann Oncol 12:1533–1538. doi: 10.1023/A:1013176129380 PubMedCrossRefGoogle Scholar
  2. 2.
    Potischman N, Coates RJ, Swanson CA, Carroll RJ, Daling JR, Brogan DR, Gammon MD, Midthune D, Curtin J, Brinton LA (2002) Increased risk of early-stage breast cancer related to consumption of sweet foods among women less than age 45 in the United States. Cancer Causes Control 13:937–946. doi: 10.1023/A:1021919416101 PubMedCrossRefGoogle Scholar
  3. 3.
    Tavani A, Giordano L, Gallus S, Talamini R, Franceschi S, Giacosa A, Montella M, La Vecchia C (2006) Consumption of sweet foods and breast cancer risk in Italy. Ann Oncol 17:341–345. doi: 10.1093/annonc/mdj051 PubMedCrossRefGoogle Scholar
  4. 4.
    Witte JS, Ursin G, Siemiatycki J, Thompson WD, Paganini-Hill A, Haile RW (1997) Diet and premenopausal bilateral breast cancer: a case-control study. Breast Cancer Res Treat 42:243–251. doi: 10.1023/A:1005710211184 PubMedCrossRefGoogle Scholar
  5. 5.
    Lubin JH, Burns PE, Blot WJ, Ziegler RG, Lees AW, Fraumeni JF Jr (1981) Dietary factors and breast cancer risk. Int J Cancer 28:685–689. doi: 10.1002/ijc.2910280605 PubMedCrossRefGoogle Scholar
  6. 6.
    Seely S, Horrobin DF (1983) Diet and breast cancer: the possible connection with sugar consumption. Med Hypotheses 11:319–327. doi: 10.1016/0306-9877(83)90095-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Fung TT, Hu FB, Holmes MD, Rosner BA, Hunter DJ, Colditz GA, Willett WC (2005) Dietary patterns and the risk of postmenopausal breast cancer. Int J Cancer 116:116–121. doi: 10.1002/ijc.20999 PubMedCrossRefGoogle Scholar
  8. 8.
    McCann SE, McCann WE, Hong CC, Marshall JR, Edge SB, Trevisan M, Muti P, Freudenheim JL (2007) Dietary patterns related to glycemic index and load and risk of premenopausal and postmenopausal breast cancer in the Western New York Exposure and Breast Cancer Study. Am J Clin Nutr 86:465–471PubMedGoogle Scholar
  9. 9.
    Terry P, Suzuki R, Hu FB, Wolk A (2001) A prospective study of major dietary patterns and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 10:1281–1285PubMedGoogle Scholar
  10. 10.
    Kaaks R (1996) Nutrition, hormones, and breast cancer: is insulin the missing link? Cancer Causes Control 7:605–625. doi: 10.1007/BF00051703 PubMedCrossRefGoogle Scholar
  11. 11.
    Pisani P (2008) Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem 114:63–70. doi: 10.1080/13813450801954451 PubMedCrossRefGoogle Scholar
  12. 12.
    Gammon MD, Neugut AI, Santella RM, Teitelbaum SL, Britton JA, Terry MB, Eng SM, Wolff MS, Stellman SD, Kabat GC, Levin B, Bradlow HL, Hatch M, Beyea J, Camann D, Trent M, Senie RT, Garbowski GC, Maffeo C, Montalvan P, Berkowitz GS, Kemeny M, Citron M, Schnabe F, Schuss A, Hajdu S, Vincguerra V, Collman GW, Obrams GI (2002) The Long Island Breast Cancer Study Project: description of a multi-institutional collaboration to identify environmental risk factors for breast cancer. Breast Cancer Res Treat 74:235–254. doi: 10.1023/A:1016387020854 PubMedCrossRefGoogle Scholar
  13. 13.
    Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New YorkCrossRefGoogle Scholar
  14. 14.
    Rothman KJ, Greenland S (1998) Modern epidemiology. Lippincott-Raven, PhiladelphiaGoogle Scholar
  15. 15.
    Lajous M, Willett W, Lazcano-Ponce E, Sanchez-Zamorano LM, Hernandez-Avila M, Romieu I (2005) Glycemic load, glycemic index, and the risk of breast cancer among Mexican women. Cancer Causes Control 16:1165–1169. doi: 10.1007/s10552-005-0355-x PubMedCrossRefGoogle Scholar
  16. 16.
    Giles GG, Simpson JA, English DR, Hodge AM, Gertig DM, Macinnis RJ, Hopper JL (2006) Dietary carbohydrate, fibre, glycaemic index, glycaemic load and the risk of postmenopausal breast cancer. Int J Cancer 118:1843–1847. doi: 10.1002/ijc.21548 PubMedCrossRefGoogle Scholar
  17. 17.
    Holmes MD, Liu S, Hankinson SE, Colditz GA, Hunter DJ, Willett WC (2004) Dietary carbohydrates, fiber, and breast cancer risk. Am J Epidemiol 159:732–739. doi: 10.1093/aje/kwh112 PubMedCrossRefGoogle Scholar
  18. 18.
    Jonas CR, McCullough ML, Teras LR, Walker-Thurmond KA, Thun MJ, Calle EE (2003) Dietary glycemic index, glycemic load, and risk of incident breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev 12:573–577PubMedGoogle Scholar
  19. 19.
    Nielsen TG, Olsen A, Christensen J, Overvad K, Tjonneland A (2005) Dietary carbohydrate intake is not associated with the breast cancer incidence rate ratio in postmenopausal Danish women. J Nutr 135:124–128PubMedGoogle Scholar
  20. 20.
    Silvera SA, Jain M, Howe GR, Miller AB, Rohan TE (2005) Dietary carbohydrates and breast cancer risk: a prospective study of the roles of overall glycemic index and glycemic load. Int J Cancer 114:653–658. doi: 10.1002/ijc.20796 PubMedCrossRefGoogle Scholar
  21. 21.
    George SM, Mayne ST, Leitzmann MF, Park Y, Schatzkin A, Flood A, Hollenbeck A, Subar AF (2009) Dietary glycemic index, glycemic load, and risk of cancer: a prospective cohort study. Am J Epidemiol 169(4):462–472PubMedCrossRefGoogle Scholar
  22. 22.
    Wen W, Shu XO, Li H, Yang G, Ji BT, Cai H, Gao YT, Zheng W (2009) Dietary carbohydrates, fiber, and breast cancer risk in Chinese women. Am J Clin Nutr 89:283–289. doi: 10.3945/ajcn.2008.26356 PubMedCrossRefGoogle Scholar
  23. 23.
    Cho E, Spiegelman D, Hunter DJ, Chen WY, Colditz GA, Willett WC (2003) Premenopausal dietary carbohydrate, glycemic index, glycemic load, and fiber in relation to risk of breast cancer. Cancer Epidemiol Biomarkers Prev 12:1153–1158PubMedGoogle Scholar
  24. 24.
    Frazier AL, Li L, Cho E, Willett WC, Colditz GA (2004) Adolescent diet and risk of breast cancer. Cancer Causes Control 15:73–82. doi: 10.1023/B:CACO.0000016617.57120.df PubMedCrossRefGoogle Scholar
  25. 25.
    Higginbotham S, Zhang ZF, Lee IM, Cook NR, Buring JE, Liu S (2004) Dietary glycemic load and breast cancer risk in the Women’s Health Study. Cancer Epidemiol Biomarkers Prev 13:65–70. doi: 10.1158/1055-9965.EPI-03-0066 PubMedCrossRefGoogle Scholar
  26. 26.
    Sieri S, Pala V, Brighenti F, Pellegrini N, Muti P, Micheli A, Evangelista A, Grioni S, Contiero P, Berrino F, Krogh V (2007) Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian prospective cohort study. Am J Clin Nutr 86:1160–1166PubMedGoogle Scholar
  27. 27.
    Mulholland HG, Murray LJ, Cardwell CR, Cantwell MM (2008) Dietary glycaemic index, glycaemic load and breast cancer risk: a systematic review and meta-analysis. Br J Cancer 99:1170–1175. doi: 10.1038/sj.bjc.6604618 PubMedCrossRefGoogle Scholar
  28. 28.
    Coulston AM, Hollenbeck CB, Swislocki AL, Reaven GM (1987) Effect of source of dietary carbohydrate on plasma glucose and insulin responses to mixed meals in subjects with NIDDM. Diabetes Care 10:395–400. doi: 10.2337/diacare.10.4.395 PubMedCrossRefGoogle Scholar
  29. 29.
    Holt SH, Miller JC, Petocz P (1997) An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr 66:1264–1276PubMedGoogle Scholar
  30. 30.
    Michaud DS, Fuchs CS, Liu S, Willett WC, Colditz GA, Giovannucci E (2005) Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 14:138–147. doi: 10.1158/1055-9965.EPI-05-0428 PubMedCrossRefGoogle Scholar
  31. 31.
    Hu FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13:3–9. doi: 10.1097/00041433-200202000-00002 PubMedCrossRefGoogle Scholar
  32. 32.
    Allen NE, Roddam AW, Allen DS, Fentiman IS, Dos Santos Silva I, Peto J, Holly JM, Key TJ (2005) A prospective study of serum insulin-like growth factor-I (IGF-I), IGF-II, IGF-binding protein-3 and breast cancer risk. Br J Cancer 92:1283–1287. doi: 10.1038/sj.bjc.6602471 PubMedCrossRefGoogle Scholar
  33. 33.
    Shi R, Yu H, McLarty J, Glass J (2004) IGF-I and breast cancer: a meta-analysis. Int J Cancer 111:418–423. doi: 10.1002/ijc.20233 PubMedCrossRefGoogle Scholar
  34. 34.
    Cleveland RJ, Gammon MD, Edmiston SN, Teitelbaum SL, Britton JA, Terry MB, Eng SM, Neugut AI, Santella RM, Conway K (2006) IGF1 CA repeat polymorphisms, lifestyle factors and breast cancer risk in the Long Island Breast Cancer Study Project. Carcinogenesis 27:758–765. doi: 10.1093/carcin/bgi294 PubMedCrossRefGoogle Scholar
  35. 35.
    Schernhammer ES, Holly JM, Pollak MN, Hankinson SE (2005) Circulating levels of insulin-like growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:699–704. doi: 10.1158/1055-9965.EPI-04-0561 PubMedCrossRefGoogle Scholar
  36. 36.
    Willett WC (1998) Nutritional epidemiology. Oxford University Press, New YorkCrossRefGoogle Scholar
  37. 37.
    Hernan MA, Hernandez-Diaz S, Robins JM (2004) A structural approach to selection bias. Epidemiology 15:615–625. doi: 10.1097/01.ede.0000135174.63482.43 PubMedCrossRefGoogle Scholar
  38. 38.
    McTiernan A (2005) Cancer prevention and management through exercise and weight control. CRC Press, Boca Raton, FLGoogle Scholar
  39. 39.
    Eng SM, Gammon MD, Terry MB, Kushi LH, Teitelbaum SL, Britton JA, Neugut AI (2005) Body size changes in relation to postmenopausal breast cancer among women on Long Island, New York. Am J Epidemiol 162:229–237. doi: 10.1093/aje/kwi195 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Patrick T. Bradshaw
    • 1
    Email author
  • Sharon K. Sagiv
    • 1
  • Geoffrey C. Kabat
    • 2
  • Jessie A. Satia
    • 1
    • 3
  • Julie A. Britton
    • 4
  • Susan L. Teitelbaum
    • 4
  • Alfred I. Neugut
    • 5
  • Marilie D. Gammon
    • 1
  1. 1.Department of Epidemiology, CB#7435 McGavran-Greenberg Hall, School of Public HealthUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Epidemiology and Population HealthAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of Nutrition, School of Public HealthUniversity of North CarolinaChapel HillUSA
  4. 4.Department of Community and Preventive MedicineMount Sinai School of MedicineNew YorkUSA
  5. 5.Department of Medicine, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkUSA

Personalised recommendations