Abstract
Objectives
To examine the contribution of maternal occupational exposure to extremely low frequency magnetic fields (ELF-MF) shortly before and during pregnancy on the incidence of childhood brain tumors.
Methods
A total of 548 incident cases and 760 healthy controls recruited between 1980 and 2002 from two Canadian provinces (Québec and Ontario) were included in this study, and their mothers were interviewed. Quantitative occupational ELF-MF exposure in microTesla units was estimated using individual exposure estimations or a job exposure matrix. We used three metrics to analyze exposure: cumulative, average, and maximum level attained.
Results
Using the average exposure metric measured before conception, an increased risk was observed for astroglial tumors (OR = 1.5, 95% CI = 1.0–2.4). During the entire pregnancy period, a significantly increased risk was observed for astroglial tumors as well as for all childhood brain tumors with the average metric (OR = 1.6, 95% CI = 1.1–2.5 and OR = 1.5, 95% CI = 1.1–2.2, respectively). Based on job titles, a twofold risk increase was observed for astroglial tumors (OR = 2.3, 95% CI = 0.8–6.3) and for all childhood brain tumors (OR = 2.3, 95% CI = 1.0–5.4) among sewing machine operators.
Conclusions
Results are suggestive of a possible association between maternal occupational ELF-MF exposure and certain brain tumors in their offspring.
Similar content being viewed by others
References
Feychting M, Forssen U, Floderus B (1997) Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology 8:384–389. doi:10.1097/00001648-199707000-00006
Kheifets L (2001) Electric and magnetic field exposure and brain cancer: a review. Bioelectromagnetics Suppl 5:S120–S131. doi:10.1002/1521-186X(2001)22:5+<::AID-BEM1028>3.0.CO;2-Y
Mezei G, Gadallah M, Kheifets L (2008) Residential magnetic field exposure and childhood brain cancer: a meta-analysis. Epidemiology 19:424–430. doi:10.1097/EDE.0b013e3181690715
Wilkins JRIII, Lynn CW (1996) Brain tumor risk in offspring of men occupationally exposed to electric and magnetic fields. Scand J Work Environ Health 22:339–345
Sorahan T, Hamilton L, Gardiner K, Hodgson JT, Harrington JM (1999) Maternal occupational exposure to electromagnetic fields before, during, and after pregnancy in relation to risks of childhood cancers: findings from the Oxford Survey of Childhood Cancers, 1953–1981 deaths. Am J Ind Med 35:348–537. doi:10.1002/(SICI)1097-0274(199904)35:4<348::AID-AJIM5>3.0.CO;2-X
Feychting M, Floderus B, Ahlbom A (2000) Parental occupational exposure to magnetic fields and childhood cancer (Sweden). Cancer Causes Control 11:151–156. doi:10.1023/A:1008922016813
Ahlbom A, Feychting M (2001) Current thinking about risks from currents. Lancet 3357:1143–1148. doi:10.1016/S0140-6736(00)04380-4
Juutilainen J, Kumlin T, Naarala J (2006) Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies. Int J Radiat Biol 82:1–12. doi:10.1080/09553000600577839
Deadman JE, Infante-Rivard C (2002) Individual estimation of exposures to extremely low frequency magnetic fields in jobs commonly held by women. Am J Epidemiol 155:368–378. doi:10.1093/aje/155.4.368
Kelsha MA, Kheifets L, Smith R (2000) The impact of work environment, utility, and sampling design on occupational magnetic field exposure summaries. AIHAJ 61:174–182. doi:10.1080/15298660008984526
Shaw AK, Li P, Infante-Rivard C (2006) Early infection and risk of childhood brain tumours. Cancer Causes Control 17:1267–1274. doi:10.1007/s10552-006-0066-y
Kramarova E, Stiller C, Ferlay J et al (eds) (1996) International classification of childhood cancer 1996. IARC, Lyon
Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P (2005) International classification of childhood cancer, third edition. Cancer 103:1457–1467. doi:10.1002/cncr.20910
Infante-Rivard C, Siemiatycki J, Lakhani R, Lakhani R, Nadon L (2005) Maternal exposure to occupational solvents and childhood leukemia. Environ Health Perspect 113:787–792
Department of Manpower and Immigration (1974) Canadian classification and dictionary of occupations 1971, vol 1. Information Canada, Ottawa
Statistics Canada (1980) Standard industrial classification, 12-501. Statistics Canada, Ottawa
McKean-Cowdin R, Preston-Martin S, Pogoda JM (1998) Parental occupation and childhood brain tumors: astroglial and primitive neuroectodermal tumors. J Occup Environ Med 40:332–340. doi:10.1097/00043764-199804000-00007
Ali R, Yu CL, Wu MT et al (2004) A case—control study of parental occupation, leukemia, and brain tumors in an industrial city in Taiwan. J Occup Environ Med 46:958–992. doi:10.1097/01.jom.0000138913.75380.13
Infante-Rivard C, Deadman JE (2003) Maternal occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukemia. Epidemiology 14:437–441
Skyberg KIH, Vistnes AI (1993) Chromosome aberrations in lymphocytes of high-voltage laboratory cable splicers exposed to electromagnetic fields. Scand J Work Environ Health 19:29–34
Nordenson I, Mild KH, Andersson G, Sandström M (1994) Chromosomal aberrations in human amniotic cells after intermittent exposure to fifty-Hertz magnetic fields. Bioelectromagnetics 15:193–301. doi:10.1002/bem.2250150404
Kuijten RR, Bunin GR, Nass CC, Meadows AT (1992) Parental occupation and childhood astrocytoma: results of a case–control study. Cancer Res 52:782–786
Olsen JH, De Nully Brown P, Jensen OM (1991) Parental employment at time of conception and risk of cancer in offspring. Eur J Cancer 27:958–965
Cordier S, Lefeuvre B, Filippini G et al (1997) Parental occupation, occupational exposure to solvents and polycyclic aromatic hydrocarbons and risk of childhood brain tumors (Italy, France, Spain). Cancer Causes Control 8:688–697. doi:10.1023/A:1018419118841
Feingold L, Savitz DA, John EM (1992) Use of a job-exposure matrix to evaluate parental occupation and childhood cancer. Cancer Causes Control 3:161–169. doi:10.1007/BF00051656
De Roos AJ, Teschke K, Savitz DA et al (2001) Parental occupational exposures to electromagnetic fields and radiation and the incidence of neuroblastoma in offspring. Epidemiology 12:508–517. doi:10.1097/00001648-200109000-00008
Plato N, Steineck G (1993) Methodology and utility of a job-exposure matrix. Am J Ind Med 23:491–502. doi:10.1002/ajim.4700230312
Acknowledgments
Claire Infante-Rivard holds a Canada Research Chair-James McGill Professorship from McGill University. The authors want to thank Drs. Mariam El-Zein and Jan Deadman for their work on the pilot study comparing coded exposures between a nonexpert and an expert. This work was supported from grants from the Fonds de la recherche en Santé du Québec and the Canadian Institutes for Health Research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, P., McLaughlin, J. & Infante-Rivard, C. Maternal occupational exposure to extremely low frequency magnetic fields and the risk of brain cancer in the offspring. Cancer Causes Control 20, 945–955 (2009). https://doi.org/10.1007/s10552-009-9311-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10552-009-9311-5