Skip to main content
Log in

Coffee intake, variants in genes involved in caffeine metabolism, and the risk of epithelial ovarian cancer

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

We evaluated whether genetic variability, as well as menopausal status, modify the association between coffee intake and risk of ovarian cancer. Risk factor information and biologic specimens from three large epidemiological studies, the Nurses’ Health Study (NHS), NHSII, and the New England based Case-Control Study of ovarian cancer (NECC) were pooled resulting in 1,354 ovarian cancer cases and 1,851 controls for analysis. Odds ratios (ORs) and 95% confidence intervals (CI) were estimated using conditional (NHS/NHSII) and unconditional (NECC) logistic regression. Coffee consumption was not associated with overall risk (OR = 0.99; 95% CI 0.77–1.28); however, there was a suggested increased risk of ovarian cancer among premenopausal women in the NECC only and an inverse association among postmenopausal women. Carrying one or both of the variant CYP19013 A or CYP19027 G alleles was associated with an 18% increased (P for trend = 0.02) and 15% decreased (P for trend = 0.05) risk of ovarian cancer, respectively. Variation in CYP1A1, CYP1A2, or CYP2A6 did not explain the inconsistent reports of coffee intake and risk. Furthermore, we did not observe any clear gene–environment interactions between caffeine metabolizing genes and ovarian cancer. Future studies evaluating mechanisms by which coffee mediates this relationship are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://www.uscnorris.com/MECGenetics/CohortGCKView.aspx.

  2. http://www.uscnorris.com/Core/DocManager/DocumentList.aspx?CID=13.

References

  1. Brekelmans CT (2003) Risk factors and risk reduction of breast and ovarian cancer. Curr Opin Obstet Gynecol 15(1):63–68. doi:10.1097/00001703-200302000-00010 Feb

    Article  PubMed  Google Scholar 

  2. La Vecchia C, Tavani A (2007) Coffee and cancer risk: an update. Eur J Cancer Prev 16(5):385–389. doi:10.1097/01.cej.0000243853.12728.76 Oct

    Article  PubMed  Google Scholar 

  3. Steevens J, Schouten LJ, Verhage BA, Goldbohm RA, van den Brandt PA (2007) Tea and coffee drinking and ovarian cancer risk: results from the Netherlands Cohort Study and a meta-analysis. Br J Cancer 97(9):1291–1294

    Article  PubMed  CAS  Google Scholar 

  4. Tworoger SS, Gertig DM, Gates MA, Hecht JL, Hankinson SE (2008) Caffeine, alcohol, smoking, and the risk of incident epithelial ovarian cancer. Cancer 112(5):1169–1177. doi:10.1002/cncr.23275

    Article  PubMed  Google Scholar 

  5. Kuper H, Titus-Ernstoff L, Harlow BL, Cramer DW (2000) Population based study of coffee, alcohol and tobacco use and risk of ovarian cancer. Int J Cancer 88(2):313–318. doi:10.1002/1097-0215(20001015)88:2<313::AID-IJC26>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  6. Terry KL, De Vivo I, Titus-Ernstoff L, Shih MC, Cramer DW (2005) Androgen receptor cytosine, adenine, guanine repeats, and haplotypes in relation to ovarian cancer risk. Cancer Res 65(13):5974–5981. doi:10.1158/0008-5472.CAN-04-3885

    Article  PubMed  CAS  Google Scholar 

  7. Hankinson SE, Willett WC, Manson JE, Hunter DJ, Colditz GA, Stampfer MJ et al (1995) Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J Natl Cancer Inst 87(17):1297–1302. doi:10.1093/jnci/87.17.1297 Sep 6

    Article  PubMed  CAS  Google Scholar 

  8. Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66(4):2476–2482. doi:10.1158/0008-5472.CAN-05-3369

    Article  PubMed  CAS  Google Scholar 

  9. Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE (2007) A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer 121(10):2225–2232. doi:10.1002/ijc.22790

    Article  PubMed  CAS  Google Scholar 

  10. Gates MA, Tworoger SS, Terry KL, Titus-Ernstoff L, Rosner B, De Vivo I et al (2008) Talc use, variants of the GSTM1, GSTT1, and NAT2 genes, and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 17(9):2436–2444

    Article  PubMed  CAS  Google Scholar 

  11. Tworoger SS, Lee IM, Buring JE, Rosner B, Hollis BW, Hankinson SE (2007) Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of incident ovarian cancer. Cancer Epidemiol Biomarkers Prev 16(4):783–788. doi:10.1158/1055-9965.EPI-06-0981

    Article  PubMed  CAS  Google Scholar 

  12. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J et al (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122(1):51–65

    PubMed  CAS  Google Scholar 

  13. U.S. Department of Agriculture (1993) Composition of foods-raw, processed, and prepared. Agricultural handbook no 8 series. Department of Agriculture, Government Printing Office, Washington, DC

  14. U.S. Department of Agriculture (1996) USDA nutrient database for standard reference. Release 11: nutrient data laboratory home page. Department of Agriculture, Government Printing Office, Washington, DC

  15. U.S. Department of Agriculture (2001) USDA nutrient database for standard reference. Release 14: nutrient data laboratory home page. Department of Agriculture, Government Printing Office, Washington, DC

  16. Hu FB, Stampfer MJ, Rimm E, Ascherio A, Rosner BA, Spiegelman D et al (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149(6):531–540

    PubMed  CAS  Google Scholar 

  17. Haiman CA, Stram DO, Pike MC, Kolonel LN, Burtt NP, Altshuler D et al (2003) A comprehensive haplotype analysis of CYP19 and breast cancer risk: the Multiethnic Cohort. Hum Mol Genet 12(20):2679–2692. doi:10.1093/hmg/ddg294

    Article  PubMed  CAS  Google Scholar 

  18. Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12(5):921–927

    PubMed  CAS  Google Scholar 

  19. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. doi:10.1016/0197-2456(86)90046-2

    Article  PubMed  CAS  Google Scholar 

  20. Song YJ, Kristal AR, Wicklund KG, Cushing-Haugen KL, Rossing MA (2008) Coffee, tea, colas, and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 17(3):712–716. doi:10.1158/1055-9965.EPI-07-2511

    Article  PubMed  CAS  Google Scholar 

  21. Goodman MT, Tung KH, McDuffie K, Wilkens LR, Donlon TA (2003) Association of caffeine intake and CYP1A2 genotype with ovarian cancer. Nutr Cancer 46(1):23–29. doi:10.1207/S15327914NC4601_03

    Article  PubMed  CAS  Google Scholar 

  22. Jordan SJ, Purdie DM, Green AC, Webb PM (2004) Coffee, tea and caffeine and risk of epithelial ovarian cancer. Cancer Causes Control 15(4):359–365. doi:10.1023/B:CACO.0000027482.00077.8b

    Article  PubMed  Google Scholar 

  23. Rietveld EC, Broekman MM, Houben JJ, Eskes TK, van Rossum JM (1984) Rapid onset of an increase in caffeine residence time in young women due to oral contraceptive steroids. Eur J Clin Pharmacol 26(3):371–373. doi:10.1007/BF00548769

    Article  PubMed  CAS  Google Scholar 

  24. Pollock BG, Wylie M, Stack JA, Sorisio DA, Thompson DS, Kirshner MA et al (1999) Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women. J Clin Pharmacol 39(9):936–940. doi:10.1177/00912709922008560

    Article  PubMed  CAS  Google Scholar 

  25. Ferrini RL, Barrett-Connor E (1996) Caffeine intake and endogenous sex steroid levels in postmenopausal women. The Rancho Bernardo Study. Am J Epidemiol 144(7):642–644

    PubMed  CAS  Google Scholar 

  26. Nagata C, Kabuto M, Shimizu H (1998) Association of coffee, green tea, and caffeine intakes with serum concentrations of estradiol and sex hormone-binding globulin in premenopausal Japanese women. Nutr Cancer 30(1):21–24

    Article  PubMed  CAS  Google Scholar 

  27. Lucero J, Harlow BL, Barbieri RL, Sluss P, Cramer DW (2001) Early follicular phase hormone levels in relation to patterns of alcohol, tobacco, and coffee use. Fertil Steril 76(4):723–729. doi:10.1016/S0015-0282(01)02005-2

    Article  PubMed  CAS  Google Scholar 

  28. Jernstrom H, Klug TL, Sepkovic DW, Bradlow HL, Narod SA (2003) Predictors of the plasma ratio of 2-hydroxyestrone to 16alpha-hydroxyestrone among pre-menopausal, nulliparous women from four ethnic groups. Carcinogenesis 24(5):991–1005. doi:10.1093/carcin/bgg047

    Article  PubMed  CAS  Google Scholar 

  29. Muti P, Bradlow HL, Micheli A, Krogh V, Freudenheim JL, Schunemann HJ et al (2000) Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16 alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology 11(6):635–640. doi:10.1097/00001648-200011000-00004

    Article  PubMed  CAS  Google Scholar 

  30. Fenster L, Quale C, Waller K, Windham GC, Elkin EP, Benowitz N et al (1999) Caffeine consumption and menstrual function. Am J Epidemiol 149(6):550–557

    PubMed  CAS  Google Scholar 

  31. Wu AH, Yu MC (2006) Tea, hormone-related cancers and endogenous hormone levels. Mol Nutr Food Res 50(2):160–169. doi:10.1002/mnfr.200500142

    Article  PubMed  CAS  Google Scholar 

  32. Hasler J (1999) Pharmacogenetics of cytochromes P450. Mol Aspects Med 20(1–2):12–24, 5–137

    PubMed  CAS  Google Scholar 

  33. Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF (1989) Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci USA 86(20):7696–7700. doi:10.1073/pnas.86.20.7696

    Article  PubMed  CAS  Google Scholar 

  34. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227(2):115–124. doi:10.1016/j.canlet.2004.10.007

    Article  PubMed  CAS  Google Scholar 

  35. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47(4):445–449. doi:10.1046/j.1365-2125.1999.00898.x

    Article  PubMed  CAS  Google Scholar 

  36. Han XM, Ou-Yang DS, Lu PX, Jiang CH, Shu Y, Chen XP et al (2001) Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734A polymorphisms of human CYP1A2. Pharmacogenetics 11(5):429–435. doi:10.1097/00008571-200107000-00006

    Article  PubMed  CAS  Google Scholar 

  37. Castorena-Torres F, Mendoza-Cantu A, de Leon MB, Cisneros B, Zapata-Perez O, Lopez-Carrillo L et al (2005) CYP1A2 phenotype and genotype in a population from the Carboniferous Region of Coahuila, Mexico. Toxicol Lett 156(3):331–339. doi:10.1016/j.toxlet.2004.12.005

    Article  PubMed  CAS  Google Scholar 

  38. Messina ES, Tyndale RF, Sellers EM (1997) A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther 282(3):1608–1614

    PubMed  CAS  Google Scholar 

  39. Miles JS, McLaren AW, Forrester LM, Glancey MJ, Lang MA, Wolf CR (1990) Identification of the human liver cytochrome P-450 responsible for coumarin 7-hydroxylase activity. Biochem J 267(2):365–371

    PubMed  CAS  Google Scholar 

  40. Forrester LM, Neal GE, Judah DJ, Glancey MJ, Wolf CR (1990) Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B1 metabolism in human liver. Proc Natl Acad Sci USA 87(21):8306–8310. doi:10.1073/pnas.87.21.8306

    Article  PubMed  CAS  Google Scholar 

  41. Krul C, Hageman G (1998) Analysis of urinary caffeine metabolites to assess biotransformation enzyme activities by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 709(1):27–34. doi:10.1016/S0378-4347(98)00016-4

    Article  PubMed  CAS  Google Scholar 

  42. Rostami-Hodjegan A, Nurminen S, Jackson PR, Tucker GT (1996) Caffeine urinary metabolite ratios as markers of enzyme activity: a theoretical assessment. Pharmacogenetics 6(2):121–149. doi:10.1097/00008571-199604000-00001

    Article  PubMed  CAS  Google Scholar 

  43. Oscarson M (2001) Genetic polymorphisms in the cytochrome P450 2A6 (CYP2A6) gene: implications for interindividual differences in nicotine metabolism. Drug Metab Dispos 29(2):91–95

    PubMed  CAS  Google Scholar 

  44. Chen GF, Tang YM, Green B, Lin DX, Guengerich FP, Daly AK et al (1999) Low frequency of CYP2A6 gene polymorphism as revealed by a one-step polymerase chain reaction method. Pharmacogenetics 9(3):327–332. doi:10.1097/00008571-199906000-00007

    Article  PubMed  CAS  Google Scholar 

  45. Goodman MT, McDuffie K, Kolonel LN, Terada K, Donlon TA, Wilkens LR et al (2001) Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol Biomarkers Prev 10(3):209–216

    PubMed  CAS  Google Scholar 

  46. Sugawara T, Nomura E, Sagawa T, Sakuragi N, Fujimoto S (2003) CYP1A1 polymorphism and risk of gynecological malignancy in Japan. Int J Gynecol Cancer 13(6):785–790. doi:10.1111/j.1525-1438.2003.13607.x

    Article  PubMed  CAS  Google Scholar 

  47. Terry KL, Titus-Ernstoff L, Garner EO, Vitonis AF, Cramer DW (2003) Interaction between CYP1A1 polymorphic variants and dietary exposures influencing ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 12(3):187–190

    PubMed  CAS  Google Scholar 

  48. Mikhailova ON, Gulyaeva LF, Prudnikov AV, Gerasimov AV, Krasilnikov SE (2006) Estrogen-metabolizing gene polymorphisms in the assessment of female hormone-dependent cancer risk. Pharmacogenomics J 6(3):189–193. doi:10.1038/sj.tpj.6500365

    Article  PubMed  CAS  Google Scholar 

  49. Holt SK, Rossing MA, Malone KE, Schwartz SM, Weiss NS, Chen C (2007) Ovarian cancer risk and polymorphisms involved in estrogen catabolism. Cancer Epidemiol Biomarkers Prev 16(3):481–489. doi:10.1158/1055-9965.EPI-06-0831

    Article  PubMed  CAS  Google Scholar 

  50. Haiman CA, Dossus L, Setiawan VW, Stram DO, Dunning AM, Thomas G et al (2007) Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Res 67(5):1893. doi:10.1158/0008-5472.CAN-06-4123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank David Cox, Margaret Gates, Aditi Hazra, and Simone Pinheiro for their statistical guidance, Hardeep Ranu for her laboratory technical assistance, as well as the study participants of the New England Case-Control Study and the Nurses’ Health Study for their dedication to these studies and their contribution to this research. This research was supported by Research Grants CA105009, CA50385, P50 CA105009 (CA49449 and P01 CA87969) from the National Cancer Institute. J.K. is a Research Fellow of the Canadian Cancer Society supported through an award from the National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Kotsopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsopoulos, J., Vitonis, A.F., Terry, K.L. et al. Coffee intake, variants in genes involved in caffeine metabolism, and the risk of epithelial ovarian cancer. Cancer Causes Control 20, 335–344 (2009). https://doi.org/10.1007/s10552-008-9247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-008-9247-1

Keywords

Navigation