Cancer Causes & Control

, Volume 20, Issue 1, pp 15–26 | Cite as

Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis

  • Katriina Heikkilä
  • Ross Harris
  • Gordon Lowe
  • Ann Rumley
  • John Yarnell
  • John Gallacher
  • Yoav Ben-Shlomo
  • Shah Ebrahim
  • Debbie A. LawlorEmail author
Original Paper



We investigated the associations of circulating C-reactive protein (CRP) and interleukin-6 (IL-6) with cancer risk.


We examined the associations of CRP and IL-6 with incident cancer in two prospective cohorts, the British Women’s Heart and Health Study (4,286 women aged 60–80) and the Caerphilly Cohort (2,398 men aged 45–59) using Cox regression and pooled our findings with previous prospective studies’ in fixed and random effects meta-analyses.


CRP and IL-6 were associated with some incident cancers in our cohorts, but the numbers of cancer cases were small. In our meta-analyses elevated CRP was associated with an increased overall risk of cancer (random effects estimate (RE): 1.10, 95% CI: 1.02, 1.18) and lung cancer (RE: 1.32, 95% CI: 1.08, 1.61). Its associations with colorectal (RE: 1.09, 95% CI: 0.98, 1.21) and breast cancer risks (RE: 1.10, 95% CI: 0.97, 1.26) were weaker. CRP appeared unrelated to prostate cancer risk (RE: 1.00 0.88, 1.13). IL-6 was associated with increased lung and breast cancer risks and decreased prostate cancer risk, and was unrelated to colorectal cancer risk.


Our findings suggest an etiological role for CRP and IL-6 in some cancers. Further large prospective and genetic studies would help to better understand this role.


Cancer Inflammation C-reactive protein Interleukin-6 Meta-analysis 



The BWHHS is co-directed by Peter Whincup and Goya Wannamethee in addition to Shah Ebrahim and Debbie Lawlor. We thank Rita Patel, Carol Bedford, Alison Emerton, Nicola Frecknall, Karen Jones, Mark Taylor, Simone Watson, and Katherine Wornell for collecting and entering data; all the general practitioners and their staff who have supported data collection; and the women who have participated in the study. We also thank Karen Craig, Estelle Poorhang, and Paul Welsh for technical assistance with the CRP and IL-6 assays. The BWHHS is funded by the Department of Health. Grants from the British Heart Foundation supported CRP and IL6 assays. Debbie Lawlor is funded by a (UK) Department of Health career scientist award and when this work was conducted, Katriina Heikkilä was funded by the (UK) Medical Research Council PhD Studentship.

Conflict of interest

None declared. The views expressed in this paper are those of the authors and not necessarily those of any funding body.

Supplementary material

10552_2008_9212_MOESM1_ESM.doc (152 kb)
MOESM1 (DOC 152 kb)


  1. 1.
    Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4(4):221–233. doi: 10.1158/1541-7786.MCR-05-0261 PubMedCrossRefGoogle Scholar
  2. 2.
    Perwez Hussain S, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121(11):2373–2380. doi: 10.1002/ijc.23173 PubMedCrossRefGoogle Scholar
  3. 3.
    Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14(6):433–439. doi: 10.1016/j.semcancer.2004.06.006 PubMedCrossRefGoogle Scholar
  4. 4.
    Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605–1621. doi: 10.1016/j.bcp. 2006.06.029 PubMedCrossRefGoogle Scholar
  5. 5.
    Danesh J, Wheeler JG, Hirschfield GM et al (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350(14):1387–1397. doi: 10.1056/NEJMoa032804 PubMedCrossRefGoogle Scholar
  6. 6.
    Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41(16):2502–2512. doi: 10.1016/j.ejca.2005.08.016 PubMedCrossRefGoogle Scholar
  7. 7.
    Ishihara K, Hirano T (2002) IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 13(4–5):357–368. doi: 10.1016/S1359-6101(02)00027-8 PubMedCrossRefGoogle Scholar
  8. 8.
    Hong DS, Angelo LS, Kurzrock R (2007) Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 110(9):1911–1928. doi: 10.1002/cncr.22999 PubMedCrossRefGoogle Scholar
  9. 9.
    Jabs WJ, Busse M, Kruger S, Jocham D, Steinhoff J, Doehn C (2005) Expression of C-reactive protein by renal cell carcinomas and unaffected surrounding renal tissue. Kidney Int 68(5):2103–2110. doi: 10.1111/j.1523-1755.2005.00666.x PubMedCrossRefGoogle Scholar
  10. 10.
    Nozoe T, Korenaga D, Futatsugi M, Saeki H, Maehara Y, Sugimachi K (2003) Immunohistochemical expression of C-reactive protein in squamous cell carcinoma of the esophagus—significance as a tumor marker. Cancer Lett 192(1):89–95. doi: 10.1016/S0304-3835(02)00630-4 PubMedCrossRefGoogle Scholar
  11. 11.
    Heikkila K, Ebrahim S, Lawlor DA (2007) A systematic review of the association between circulating concentrations of C reactive protein and cancer. J Epidemiol Community Health 61(9):824–833. doi: 10.1136/jech.2006.051292 PubMedCrossRefGoogle Scholar
  12. 12.
    Heikkila K, Ebrahim S, Lawlor DA (2008) A systematic review of circulating concentrations of interleukin-6 (IL-6) and cancer. Eur J Cancer 44(7):937–945. doi: 10.1016/j.ejca.2008.02.047 PubMedCrossRefGoogle Scholar
  13. 13.
    Basso D, Fabris C, Meani A et al (1988) C reactive protein in pancreatic cancer and chronic pancreatitis. Ann Clin Res 20(6):414–416PubMedGoogle Scholar
  14. 14.
    O’Hanlon DM, Lynch J, Cormican M, Given HF (2002) The acute phase response in breast carcinoma. Anticancer Res 22(2B):1289–1293PubMedGoogle Scholar
  15. 15.
    Lawlor DA, Okasha M, Gunnell D, Davey Smith G, Ebrahim S (2003) Associations of adult measures of childhood growth with breast cancer: findings from the British Women’s Heart and Health Study. Br J Cancer 89(1):81–87. doi: 10.1038/sj.bjc.6600972 PubMedCrossRefGoogle Scholar
  16. 16.
    MRC Epidemiology Unit C (2007) Caerphilly prospective study. Department of Social Medicine, University of BristolGoogle Scholar
  17. 17.
    Lawlor DA, Ebrahim S, Davey SG (2002) Socioeconomic position in childhood and adulthood and insulin resistance: cross sectional survey using data from British women’s heart and health study. BMJ 325(7368):805–807. doi: 10.1136/bmj.325.7368.805 PubMedCrossRefGoogle Scholar
  18. 18.
    Caruso C, Lio D, Cavallone L, Franceschi C (2004) Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci 1028:1–13. doi: 10.1196/annals.1322.001 PubMedCrossRefGoogle Scholar
  19. 19.
    Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8(3):131–136. doi: 10.1097/00062752-200105000-00001 PubMedCrossRefGoogle Scholar
  20. 20.
    Himmerich H, Fulda S, Linseisen J et al (2006) TNF-alpha, soluble TNF receptor and interleukin-6 plasma levels in the general population. Eur Cytokine Netw 17(3):196–201PubMedGoogle Scholar
  21. 21.
    Mendall MA, Patel P, Asante M et al (1997) Relation of serum cytokine concentrations to cardiovascular risk factors and coronary heart disease. Heart 78(3):273–277PubMedGoogle Scholar
  22. 22.
    Lowe GD (2005) Circulating inflammatory markers and risks of cardiovascular and non-cardiovascular disease. J Thromb Haemost 3(8):1618–1627. doi: 10.1111/j.1538-7836.2005.01416.x PubMedCrossRefGoogle Scholar
  23. 23.
    Fernandez-Real JM, Vayreda M, Richart C et al (2001) Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab 86(3):1154–1159. doi: 10.1210/jc.86.3.1154 PubMedCrossRefGoogle Scholar
  24. 24.
    Colbert LH, Visser M, Simonsick EM et al (2004) Physical activity, exercise, and inflammatory markers in older adults: findings from the health, aging and body composition study. J Am Geriatr Soc 52(7):1098–1104. doi: 10.1111/j.1532-5415.2004.52307.x PubMedCrossRefGoogle Scholar
  25. 25.
    Jousilahti P, Salomaa V, Rasi V, Vahtera E, Palosuo T (2003) Association of markers of systemic inflammation, C reactive protein, serum amyloid A, and fibrinogen, with socioeconomic status. J Epidemiol Community Health 57(9):730–733. doi: 10.1136/jech.57.9.730 PubMedCrossRefGoogle Scholar
  26. 26.
    Lawlor DA, Davey Smith G, Rumley A, Lowe GD, Ebrahim S (2005) Associations of fibrinogen and C-reactive protein with prevalent and incident coronary heart disease are attenuated by adjustment for confounding factors. British Women’s Heart and Health Study. Thromb Haemost 93(5):955–963PubMedGoogle Scholar
  27. 27.
    Rexrode KM, Pradhan A, Manson JE, Buring JE, Ridker PM (2003) Relationship of total and abdominal adiposity with CRP and IL-6 in women. Ann Epidemiol 13(10):674–682. doi: 10.1016/S1047-2797(03)00053-X PubMedCrossRefGoogle Scholar
  28. 28.
    Ford ES (2003) Asthma, body mass index, and C-reactive protein among US adults. J Asthma 40(7):733–739. doi: 10.1081/JAS-120023497 PubMedCrossRefGoogle Scholar
  29. 29.
    Harris RE, Beebe-Donk J, Doss H, Burr DD (2005) Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep 13(4):559–583PubMedGoogle Scholar
  30. 30.
    Berg J, Fellier H, Christoph T, Grarup J, Stimmeder D (1999) The analgesic NSAID lornoxicam inhibits cyclooxygenase (COX)-1/-2, inducible nitric oxide synthase (iNOS), and the formation of interleukin (IL)-6 in vitro. Inflamm Res 48(7):369–379. doi: 10.1007/s000110050474 PubMedCrossRefGoogle Scholar
  31. 31.
    Gonzalez E, de la Cruz CC, de Nicolas NR, Egido J, Herrero-Beaumont G (1994) Long-term effect of nonsteroidal anti-inflammatory drugs on the production of cytokines and other inflammatory mediators by blood cells of patients with osteoarthritis. Agents Actions 41(3–4):171–178. doi: 10.1007/BF02001912 PubMedCrossRefGoogle Scholar
  32. 32.
    Prasad K (2006) C-reactive protein (CRP)-lowering agents. Cardiovasc Drug Rev 24(1):33–50. doi: 10.1111/j.1527-3466.2006.00033.x PubMedCrossRefGoogle Scholar
  33. 33.
    Cushman M, Meilahn EN, Psaty BM, Kuller LH, Dobs AS, Tracy RP (1999) Hormone replacement therapy, inflammation, and hemostasis in elderly women. Arterioscler Thromb Vasc Biol 19(4):893–899PubMedGoogle Scholar
  34. 34.
    Manns PJ, Williams DP, Snow CM, Wander RC (2003) Physical activity, body fat, and serum C-reactive protein in postmenopausal women with and without hormone replacement. Am J Hum Biol 15(1):91–100. doi: 10.1002/ajhb.10117 PubMedCrossRefGoogle Scholar
  35. 35.
    Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD (2002) Postmenopausal hormone replacement therapy: scientific review. JAMA 288(7):872–881. doi: 10.1001/jama.288.7.872 PubMedCrossRefGoogle Scholar
  36. 36.
    Pradhan AD, Manson JE, Rossouw JE et al (2002) Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA 288(8):980–987. doi: 10.1001/jama.288.8.980 PubMedCrossRefGoogle Scholar
  37. 37.
    Silvestri A, Gebara O, Vitale C et al (2003) Increased levels of C-reactive protein after oral hormone replacement therapy may not be related to an increased inflammatory response. Circulation 107(25):3165–3169. doi: 10.1161/01.CIR.0000074208.02226.5E PubMedCrossRefGoogle Scholar
  38. 38.
    Lawlor DA, Okasha M, Gunnell D, Davey Smith G, Ebrahim S (2003) Associations of adult measures of childhood growth with breast cancer: findings from the British Women’s Heart and Health Study. Br J Cancer 89(1):81–87. doi: 10.1038/sj.bjc.6600972 PubMedCrossRefGoogle Scholar
  39. 39.
    MRC Unit (South Wales) (1985) The Caerphilly Collaborative Heart Disease Study Project Description and Manual of Operations. MRC Unit, South WalesGoogle Scholar
  40. 40.
    Erlinger TP, Platz EA, Rifai N, Helzlsouer KJ (2004) C-reactive protein and the risk of incident colorectal cancer. JAMA 291(5):585–590. doi: 10.1001/jama.291.5.585 PubMedCrossRefGoogle Scholar
  41. 41.
    Ito Y, Suzuki K, Tamakoshi K et al (2005) Colorectal cancer and serum C-reactive protein levels: a case–control study nested in the JACC Study. J Epidemiol 15(Suppl 2):S185–S189. doi: 10.2188/jea.15.S185 PubMedCrossRefGoogle Scholar
  42. 42.
    Otani T, Iwasaki M, Sasazuki S, Inoue M, Tsugane S (2006) Plasma C-reactive protein and risk of colorectal cancer in a nested case–control study: Japan Public Health Center-based prospective study. Cancer Epidemiol Biomarkers Prev 15(4):690–695. doi: 10.1158/1055-9965.EPI-05-0708 PubMedCrossRefGoogle Scholar
  43. 43.
    Suzuki K, Ito Y, Wakai K et al (2006) Serum heat shock protein 70 levels and lung cancer risk: a case–control study nested in a large cohort study. Cancer Epidemiol Biomarkers Prev 15(9):1733–1737. doi: 10.1158/1055-9965.EPI-06-0005 PubMedCrossRefGoogle Scholar
  44. 44.
    Baillargeon J, Platz EA, Rose DP et al (2006) Obesity, adipokines, and prostate cancer in a prospective population-based study. Cancer Epidemiol Biomarkers Prev 15(7):1331–1335. doi: 10.1158/1055-9965.EPI-06-0082 PubMedCrossRefGoogle Scholar
  45. 45.
    Chene G, Thompson SG (1996) Methods for summarizing the risk associations of quantitative variables in epidemiologic studies in a consistent form. Am J Epidemiol 144(6):610–621PubMedGoogle Scholar
  46. 46.
    Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309PubMedGoogle Scholar
  47. 47.
    Gunter MJ, Stolzenberg-Solomon R, Cross AJ et al (2006) A prospective study of serum C-reactive protein and colorectal cancer risk in men. Cancer Res 66(4):2483–2487. doi: 10.1158/0008-5472.CAN-05-3631 PubMedCrossRefGoogle Scholar
  48. 48.
    Helzlsouer KJ, Erlinger TP, Platz EA (2006) C-reactive protein levels and subsequent cancer outcomes: results from a prospective cohort study. Eur J Cancer 42(6):704–707. doi: 10.1016/j.ejca.2006.01.008 PubMedCrossRefGoogle Scholar
  49. 49.
    Il’yasova D, Colbert LH, Harris TB et al (2005) Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev 14(10):2413–2418. doi: 10.1158/1055-9965.EPI-05-0316 PubMedCrossRefGoogle Scholar
  50. 50.
    Llorca J, Lopez-Diaz MJ, Gonzalez-Juanatey C, Ollier WE, Martin J, Gonzalez-Gay MA (2007) Persistent chronic inflammation contributes to the development of cancer in patients with rheumatoid arthritis from a defined population of northwestern Spain. Semin Arthritis Rheum 37(1):31–38. doi: 10.1016/j.semarthrit.2007.01.002 PubMedCrossRefGoogle Scholar
  51. 51.
    McSorley MA, Alberg AJ, Allen DS et al (2007) C-reactive protein concentrations and subsequent ovarian cancer risk. Obstet Gynecol 109(4):933–941PubMedGoogle Scholar
  52. 52.
    Platz EA, De Marzo AM, Erlinger TP et al (2004) No association between pre-diagnostic plasma C-reactive protein concentration and subsequent prostate cancer. Prostate 59(4):393–400. doi: 10.1002/pros.10368 PubMedCrossRefGoogle Scholar
  53. 53.
    Rifai N, Buring JE, Lee IM, Manson JE, Ridker PM (2002) Is C-reactive protein specific for vascular disease in women? Ann Intern Med 136(7):529–533PubMedGoogle Scholar
  54. 54.
    Siemes C, Visser LE, Coebergh JW et al (2006) C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol 24(33):5216–5222. doi: 10.1200/JCO.2006.07.1381 PubMedCrossRefGoogle Scholar
  55. 55.
    Trichopoulos D, Psaltopoulou T, Orfanos P, Trichopoulou A, Boffetta P (2006) Plasma C-reactive protein and risk of cancer: a prospective study from Greece. Cancer Epidemiol Biomarkers Prev 15(2):381–384. doi: 10.1158/1055-9965.EPI-05-0626 PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang SM, Buring JE, Lee IM, Cook NR, Ridker PM (2005) C-reactive protein levels are not associated with increased risk for colorectal cancer in women. Ann Intern Med 142(6):425–432PubMedGoogle Scholar
  57. 57.
    Zhang SM, Lin J, Cook NR et al (2007) C-reactive protein and risk of breast cancer. J Natl Cancer Inst 99(11):890–894. doi: 10.1093/jnci/djk202 PubMedCrossRefGoogle Scholar
  58. 58.
    Breen EC, MM van der, Cumberland W, Kishimoto T, Detels R, Martinez-Maza O (1999) The development of AIDS-associated Burkitt’s/small noncleaved cell lymphoma is preceded by elevated serum levels of interleukin 6. Clin Immunol 92(3):293–299. doi: 10.1006/clim.1999.4760 PubMedCrossRefGoogle Scholar
  59. 59.
    Gan WQ, Man SFP, Senthilselvan A, Sin DD (2004) Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax 59(7):574–580. doi: 10.1136/thx.2003.019588 PubMedCrossRefGoogle Scholar
  60. 60.
    Daniels CE, Jett JR (2005) Does interstitial lung disease predispose to lung cancer? Curr Opin Pulm Med 11(5):431–437. doi: 10.1097/01.mcp. PubMedCrossRefGoogle Scholar
  61. 61.
    Sin DD, Man SFP, McWilliams A, Lam S (2006) Progression of airway dysplasia and C-reactive protein in smokers at high risk of lung cancer. Am J Respir Crit Care Med 173(5):535–539. doi: 10.1164/rccm.200508-1305OC PubMedCrossRefGoogle Scholar
  62. 62.
    Tsilidis KK, Branchini C, Guallar E, Helzlsouer KJ, Erlinger TP, Platz EA (2008) C-reactive protein and colorectal cancer risk: a systematic review of prospective studies. Int J Cancer 123(5):1133–1140. doi: 10.1002/ijc.23606 PubMedCrossRefGoogle Scholar
  63. 63.
    Fain JN (2006) Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Interleukins 74:443–477. doi: 10.1016/S0083-6729(06)74018-3 CrossRefGoogle Scholar
  64. 64.
    Mohamed-Ali V, Goodrick S, Rawesh A et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-{alpha}, in vivo. J Clin Endocrinol Metab 82(12):4196–4200. doi: 10.1210/jc.82.12.4196 PubMedCrossRefGoogle Scholar
  65. 65.
    Bluher S, Kratzsch J, Kiess W (2005) Insulin-like growth factor I, growth hormone and insulin in white adipose tissue. Best Pract Res Clin Endocrinol Metab 19(4):577–587. doi: 10.1016/j.beem.2005.07.011 PubMedCrossRefGoogle Scholar
  66. 66.
    Riedemann J, Macaulay VM (2006) IGF1R signalling and its inhibition. Endocr Relat Cancer 13(Supplement_1):S33–S43PubMedCrossRefGoogle Scholar
  67. 67.
    Paule B, Terry S, Kheuang L, Soyeux P, Vacherot F, de la Taille A (2007) The NF-kappaB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol 25(5):477–489. doi: 10.1007/s00345-007-0175-6 PubMedCrossRefGoogle Scholar
  68. 68.
    Weinberg RA (2007) Crowd control: tumour immunology and immunotherapy. In: The biology of cancer, 1st edn. Garland Science, Taylor and Francis Group, LLC Google Scholar
  69. 69.
    Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6(11):836–848. doi: 10.1038/nri1961 PubMedCrossRefGoogle Scholar
  70. 70.
    Ness RB, Cottreau C (1999) Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 91(17):1459–1467. doi: 10.1093/jnci/91.17.1459 PubMedCrossRefGoogle Scholar
  71. 71.
    Kulbe H, Thompson R, Wilson JL et al (2007) The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 67(2):585–592. doi: 10.1158/0008-5472.CAN-06-2941 PubMedCrossRefGoogle Scholar
  72. 72.
    Davey Smith G, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22. doi: 10.1093/ije/dyg070 PubMedCrossRefGoogle Scholar
  73. 73.
    Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG (2007) Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. doi: 10.1002/sim.3034 CrossRefGoogle Scholar
  74. 74.
    Theodoropoulos G, Papaconstantinou I, Felekouras E et al (2006) Relation between common polymorphisms in genes related to inflammatory response and colorectal cancer. World J Gastroenterol 12(31):5037–5043PubMedGoogle Scholar
  75. 75.
    Balasubramanian SP, Azmy IA, Higham SE et al (2006) Interleukin gene polymorphisms and breast cancer: a case control study and systematic literature review. BMC Cancer 6:188. doi: 10.1186/1471-2407-6-188 PubMedCrossRefGoogle Scholar
  76. 76.
    Kamangar F, Abnet CC, Hutchinson AA et al (2006) Polymorphisms in inflammation-related genes and risk of gastric cancer (Finland). Cancer Causes Control 17(1):117–125. doi: 10.1007/s10552-005-0439-7 PubMedCrossRefGoogle Scholar
  77. 77.
    Gunter MJ, Canzian F, Landi S, Chanock SJ, Sinha R, Rothman N (2006) Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol Biomarkers Prev 15(6):1126–1131. doi: 10.1158/1055-9965.EPI-06-0042 PubMedCrossRefGoogle Scholar
  78. 78.
    Lan Q, Zheng T, Rothman N et al (2006) Cytokine polymorphisms in the Th1/Th2 pathway and susceptibility to non-Hodgkin lymphoma. Blood 107(10):4101–4108. doi: 10.1182/blood-2005-10-4160 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Katriina Heikkilä
    • 1
  • Ross Harris
    • 1
  • Gordon Lowe
    • 2
  • Ann Rumley
    • 2
  • John Yarnell
    • 3
  • John Gallacher
    • 4
  • Yoav Ben-Shlomo
    • 1
  • Shah Ebrahim
    • 5
  • Debbie A. Lawlor
    • 1
    • 6
    Email author
  1. 1.Department of Social MedicineUniversity of BristolBristolUK
  2. 2.Division of Cardiovascular and Medical SciencesUniversity of GlasgowGlasgowScotland, UK
  3. 3.Department of Epidemiology and Public HealthQueen’s University BelfastBelfastIreland, UK
  4. 4.Cardiff University School of MedicineCardiffWales, UK
  5. 5.London School of Hygiene and Tropical MedicineLondonUK
  6. 6.MRC Centre of Causal Analyses in Translational EpidemiologyUniversity of BristolBristolUK

Personalised recommendations