Cancer Causes & Control

, Volume 18, Issue 4, pp 449–455 | Cite as

Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract

  • Daniele Campa
  • Mia Hashibe
  • David Zaridze
  • Neonila Szeszenia-Dabrowska
  • Ioan Nicolae Mates
  • Vladimir Janout
  • Ivana Holcatova
  • Eleonóra Fabiánová
  • Valérie Gaborieau
  • Rayjean J. Hung
  • Paolo Boffetta
  • Paul Brennan
  • Federico CanzianEmail author
Brief Report



The purpose of this study was to investigate the role of polymorphisms of genes involved in inflammation in the risk of cancers of the upper aerodigestive tract (UADT).


We have evaluated the role of polymorphisms in key genes related to inflammation, namely IL1B (rs1143627), COX2/PTGS2 (rs5275), and IL8 (rs4073) in a large case–control study comprising 811 UADT cancer cases and 1,083 controls.


An association was observed for squamous cell carcinoma of the pharynx for a polymorphism in the promoter of the IL1B gene, with an OR of 2.39 (95% CI = 1.19–4.81) for the homozygotes for the minor allele A promoter polymorphism of IL8 was associated with decreased risk of laryngeal cancer, with an OR of 0.70 (95% CI = 0.50–0.98) for carriers of the minor allele.


To our knowledge, this is the first report on the role of these polymorphisms with respect to UADT carcinogenesis. Our results suggest that inflammation-related polymorphisms play a role, albeit minor, in the risk of developing cancers of the upper aerodigestive tract.


Interleukin-1 Interleukin-8 Cyclooxygenase-2 Upper aerodigestive tract cancers Oral cancer Pharynx cancer Larynx cancer Esophageal cancer 



This work was supported by grants from the European Commission’s INCO-COPERNICUS Program (Contract No. IC15-CT98-0332), the US National Institutes of Health/National Cancer Institute (CA92039) and the World Cancer Research Foundation (WCRF 99A28). Daniele Campa was a recipient of a fellowship by the University of Pisa and a special training award by the International Agency for Research on Cancer.


  1. 1.
    Ferlay J, Pisani P, Parkin DM (2004) GLOBOCAN 2002: cancer incidence, mortality and prevalence worldwide, Version 2.0. IARC Cancer Base No. 5, IARC Press, Lyon, FranceGoogle Scholar
  2. 2.
    Bray I, Brennan P, Boffetta P (2000) Projections of alcohol- and tobacco-related cancer mortality in Central Europe. Int J Cancer 87(1):122–128PubMedCrossRefGoogle Scholar
  3. 3.
    International Agency for Research on Cancer (2004) Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83:1–1438Google Scholar
  4. 4.
    Sturgis EM, Wei Q (2002) Genetic susceptibility–molecular epidemiology of head and neck cancer. Curr Opin Oncol 14(3):310–317PubMedCrossRefGoogle Scholar
  5. 5.
    Hung RJ et al (2005) Perspectives on the molecular epidemiology of aerodigestive tract cancers. Mutat Res 592(1–2):102–118PubMedGoogle Scholar
  6. 6.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMedCrossRefGoogle Scholar
  7. 7.
    Imhof A et al (2004) Overall alcohol intake, beer, wine, and systemic markers of inflammation in western Europe: results from three MONICA samples (Augsburg, Glasgow, Lille). Eur Heart J 25(23):2092–2100PubMedCrossRefGoogle Scholar
  8. 8.
    Kuschner WG et al (1996) Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur Respir J 9(10):1989–1994PubMedCrossRefGoogle Scholar
  9. 9.
    Matanic D et al (2003) Cytokines in patients with lung cancer. Scand J Immunol 57(2):173–178PubMedCrossRefGoogle Scholar
  10. 10.
    Li N et al (2005) Overexpression of 5-lipoxygenase and cyclooxygenase 2 in hamster and human oral cancer and chemopreventive effects of zileuton and celecoxib. Clin Cancer Res 11(5):2089–2096PubMedCrossRefGoogle Scholar
  11. 11.
    Zhi H et al (2006) Significance of COX-2 expression in human esophageal squamous cell carcinoma. Carcinogenesis 27(6):1214–1221PubMedCrossRefGoogle Scholar
  12. 12.
    Anto RJ et al (2002) Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis 23(9):1511–1518PubMedCrossRefGoogle Scholar
  13. 13.
    Corley DA et al (2003) Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology 124(1):47–56PubMedCrossRefGoogle Scholar
  14. 14.
    Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines–CXC and CC chemokines. Adv Immunol 55:97–179PubMedCrossRefGoogle Scholar
  15. 15.
    Zhu YM et al (2004) Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. Br J Cancer 91(11):1970–1976PubMedCrossRefGoogle Scholar
  16. 16.
    Koch AE et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801PubMedCrossRefGoogle Scholar
  17. 17.
    Garte S et al (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10(12):1239–1248PubMedGoogle Scholar
  18. 18.
    Hung RJ et al (2005) Large-scale investigation of base excision repair genetic polymorphisms and lung cancer risk in a multicenter study. J Natl Cancer Inst 97(8):567–576PubMedGoogle Scholar
  19. 19.
    Hashibe M et al (2006) Evidence for an important role of alcohol- and aldehyde-metabolizing genes in cancers of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev 15(4):696–703PubMedCrossRefGoogle Scholar
  20. 20.
    Wacholder S et al (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96(6):434–442PubMedCrossRefGoogle Scholar
  21. 21.
    El-Omar EM et al (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776):398–402PubMedCrossRefGoogle Scholar
  22. 22.
    Haukim N et al (2002) Cytokine gene polymorphism in human disease: on-line databases, supplement 2. Genes Immun 3(6):313–330PubMedCrossRefGoogle Scholar
  23. 23.
    Zienolddiny S et al (2004) Polymorphisms of the interleukin-1 beta gene are associated with increased risk of non-small cell lung cancer. Int J Cancer 109(3):353–356PubMedCrossRefGoogle Scholar
  24. 24.
    Campa D et al (2005) Lack of association between polymorphisms in inflammatory genes and lung cancer risk. Cancer Epidemiol Biomarkers Prev 14(2):538–539PubMedCrossRefGoogle Scholar
  25. 25.
    Rad R et al (2004) Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonisation during Helicobacter pylori infection. Gut 53(8):1082–1089PubMedCrossRefGoogle Scholar
  26. 26.
    Campa D et al (2004) Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 25(2):229–235PubMedCrossRefGoogle Scholar
  27. 27.
    Langsenlehner U et al (2006) The cyclooxygenase-2 (PTGS2) 8473T > C polymorphism is associated with breast cancer risk. Clin Cancer Res 12(4):1392–1394PubMedCrossRefGoogle Scholar
  28. 28.
    Gammon MD et al (2004) Nonsteroidal anti-inflammatory drug use associated with reduced incidence of adenocarcinomas of the esophagus and gastric cardia that overexpress cyclin D1: a population-based study. Cancer Epidemiol Biomarkers Prev 13(1):34–39PubMedCrossRefGoogle Scholar
  29. 29.
    Nabors LB et al (2001) HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 61(5):2154–2161PubMedGoogle Scholar
  30. 30.
    Hull J et al (2001) Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus. Am J Hum Genet 69(2):413–419PubMedCrossRefGoogle Scholar
  31. 31.
    Lee WP et al (2005) The -251T allele of the interleukin-8 promoter is associated with increased risk of gastric carcinoma featuring diffuse-type histopathology in Chinese population. Clin Cancer Res 11(18):6431–6441PubMedCrossRefGoogle Scholar
  32. 32.
    Taguchi A et al (2005) Interleukin-8 promoter polymorphism increases the risk of atrophic gastritis and gastric cancer in Japan. Cancer Epidemiol Biomarkers Prev 14(11 Pt 1):2487–2493PubMedCrossRefGoogle Scholar
  33. 33.
    Savage SA et al (2006) Interleukin-8 polymorphisms are not associated with gastric cancer risk in a Polish population. Cancer Epidemiol Biomarkers Prev 15(3):589–591PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Daniele Campa
    • 1
    • 2
  • Mia Hashibe
    • 1
  • David Zaridze
    • 3
  • Neonila Szeszenia-Dabrowska
    • 4
  • Ioan Nicolae Mates
    • 5
  • Vladimir Janout
    • 6
  • Ivana Holcatova
    • 7
  • Eleonóra Fabiánová
    • 8
  • Valérie Gaborieau
    • 1
  • Rayjean J. Hung
    • 1
  • Paolo Boffetta
    • 1
  • Paul Brennan
    • 1
  • Federico Canzian
    • 1
    • 9
    Email author
  1. 1.International Agency for Research on CancerLyonFrance
  2. 2.Department of BiologyUniversita’ di PisaPisaItaly
  3. 3.Institute of CarcinogenesisCancer Research CenterMoscowRussia
  4. 4.Department of Occupational and Environmental EpidemiologyInstitute of Occupational MedicineLodzPoland
  5. 5.University of Medicine and Pharmacy “Carol Davila”BucharestRomania
  6. 6.Department of Preventive Medicine, Faculty of MedicinePalacky UniversityOlomoucCzech Republic
  7. 7.Institute of Hygiene and Epidemiology, First Faculty of MedicineCharles UniversityPragueCzech Republic
  8. 8.Department of Occupational HealthSpecialized State Health InstituteBanska BystricaSlovakia
  9. 9.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations