Skip to main content
Log in

Is Melatonin the Hormonal Missing Link Between Magnetic Field Effects and Human Diseases?

  • Special Section on Cancer and Rhythm
  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

The disruption of melatonin secretion has been largely studied since it could provide the missing link between the exposure to 50/60-Hz electric and magnetic fields (EMF) and the occurrence of possible health effects as the “melatonin hypothesis”. We analysed the current experimental data from animal (rodents) where contradictory results have been observed, and from human studies conducted with volunteers or with workers in various conditions of exposure, biological endpoints and metrics. In humans, even in long lasting exposures, the overall results of these studies do not support the “melatonin hypothesis”. It is unlikely that malignancies or mood disorders reported by people exposed to 50/60-Hz EMF could be related to the disruption of the melatonin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109:273–284

    CAS  PubMed  Google Scholar 

  2. Wertheimer N, Leeper E (1982) Adult cancer related to electrical wires near the home. Int J Epidemiol 11:345–355

    CAS  PubMed  Google Scholar 

  3. Savitz DA, Wachtel H, Barnes FA, John EM, Tvrdik JG (1988) Casecontrol study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol 128:21–38

    CAS  PubMed  Google Scholar 

  4. Ahlbom A, Day N, Feychting M, etal. (2000) A pooled analysis of magnetic fields and childhood leukemia. Br J Cancer 83:692–698

    Article  CAS  PubMed  Google Scholar 

  5. Reichmanis M, Perry FS, Marino AA, Becker RO (1979) Relation between suicide and the electromagnetic field of overhead power lines. Physiol Chem Physics 11:395–403

    CAS  Google Scholar 

  6. Perry FS, Pearl L (1988) Power frequency magnetic field and illness in multistory blocks. Public Health 102:11–18

    CAS  PubMed  Google Scholar 

  7. Linet MS, Hatch EE, Kleinerman RA, etal. (1997) Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med 337:1–7

    Article  CAS  PubMed  Google Scholar 

  8. McBride ML, Gallagher RP, Theriault G, etal. (1999) Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada. Am J Epidemiol 149:831–842

    CAS  PubMed  Google Scholar 

  9. Wilson BW, Stevens RG, Anderson LE (1989) Neuroendocrine mediated effects of electromagnetic-field exposure: possible role of the pineal gland. Life Sci 45:1319–1332

    Article  CAS  PubMed  Google Scholar 

  10. Wilson BW (1994) Neuroendocrine responses to electric and magnetic fields. In: Carpenter DO, Ayrapetyan S (eds) Biological Effects of Electric and Magnetic Fields. Academic Press, New York, pp 287–313

    Google Scholar 

  11. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210:1267–1269

    CAS  PubMed  Google Scholar 

  12. Depres-Brummer P, Levi F, Metzger G, Touitou Y (1995) Light-induced suppression of the rat circadian system. Am J Physiol 37:R1111–R1116

    Google Scholar 

  13. Das Gupta TK, Terz J (1967) Influence of the pineal gland on growth and spread of melatonin in the hamster. Cancer Res 27:1306–1311

    CAS  PubMed  Google Scholar 

  14. Rodin AE (1963) The growth and spread of walker 256 carcinoma in pinealectomized rats. Cancer Res (abstract) 23:1545

    CAS  Google Scholar 

  15. Tamarkin L, Cohen M, Roselle D, Reichert C, Lippman M, Chabner B (1981) Melatonin inhibition and pinealectomy enhancement of 7, 12-dimethyl-benz(a)anthracene-induced mammary tumors in the rat. Cancer Res 41:4432–4436

    CAS  PubMed  Google Scholar 

  16. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Rosenthal NE (1981) Manic depressive patients may be supersensitive to light. Lancet 106:145–151

    Google Scholar 

  17. Claustrat B, Chazot G, Brun J (1984) A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatr 19:1215–1228

    CAS  Google Scholar 

  18. Wehr TA, Godwin FK (1981) American Handbook of Psychiatry Vol. 7, 2nd edn. Basic Books, New-York, pp 46–74

    Google Scholar 

  19. Stevens RG, Davies S (1996) The melatonin hypothesis: electric power and breast cancer. Environ Health Perspect 104:135–140

    CAS  PubMed  Google Scholar 

  20. Yellon SM (1994) Acute 60 Hz magnetic field exposure effects on the melatonin rhythm in the pineal gland and circulation to the adult Djungarian hamster. J Pineal Res 16:136–144

    CAS  PubMed  Google Scholar 

  21. Yellon SM, Gottfried L (1992) An acute 60 Hz exposure suppresses the nighttime melatonin rhythm in the adult Djungarian hamster in short days. Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and Use of Electricity, November 8–12 1992, San Diego, California. U.S. Department of Energy: A-22

  22. Wilson BW, Morris JE, Sasser LB, etal. (1993) Changes in the hypothalamus and pineal gland on Djungarian hamsters from short-term exposure to 60 Hz magnetic field. Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and Use of Electricity, October 31–November 4 1993, Savannah, Georgia. U.S. Department of Energy: A-30

  23. Kato M, Honma K, Shigemitsu T, etal. (1993) Effects of exposure to a circularly polarized sinusoidal 50 Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics 14:97–106

    Article  CAS  PubMed  Google Scholar 

  24. Kato M, Honma KS, Shigemitsu T, etal. (1994) Horizontal or vertical 50 Hz, 1 μT magnetic fields have no effect on pineal gland or plasma melatonin concentration of albino rats. Neurosci Lett 168:205–208

    Article  CAS  PubMed  Google Scholar 

  25. Kato M, Honma KS, Shigemitsu T, etal. (1994) Circularly polarized 50 Hz magnetic field exposure reduces pineal gland and blood melatonin concentrations in Long-Evans rats. Neurosci Lett 166:59–62

    Article  CAS  PubMed  Google Scholar 

  26. Bakos J, Nagy N, Thuroczy Q, etal. (1995) Sinusoidal 50 Hz, 100 μT magnetic field has no acute effect on urinary 6-sulphatoxymelatonin in Wistar rats. Bioelectromagnetics 16:377–380

    Article  CAS  PubMed  Google Scholar 

  27. Selmaoui B, Touitou Y (1995) Sinusoidal 50 Hz magnetic fields depress rat pineal NAT activity and serum melatonin: role of duration and intensity of exposure. Life Sci 57:1351–1358

    Article  CAS  PubMed  Google Scholar 

  28. Loscher W, Wahnschaffe U, Mevissen M, etal. (1994) Effects of weak alternating magnetic fields on nocturnal melatonin production and mammary carcinogenesis in rats. Oncology 51:288–295

    CAS  PubMed  Google Scholar 

  29. Selmaoui B, Lambrozo J, Touitou Y (1996) Magnetic fields and pineal function in humans: evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxy-melatonin circadian rhythm. Life Sci 58:1539–1549

    Article  CAS  PubMed  Google Scholar 

  30. Arnetz BB, Berg M (1996) Melatonin and adrenocorticotropic hormone levels in video display unit workers during work and leisure. J Occup Environ Med 38:1108–1110

    CAS  PubMed  Google Scholar 

  31. Graham C, Cook MR, Riffle DW, Gerkovich MM, Cohen HD (1996) Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics 17:263–273

    Article  CAS  PubMed  Google Scholar 

  32. Graham C, Cook MR, Riffle DW, Gerkovich MM, Cohen HD (1996) Human melatonin during continuous magnetic field exposure. Bioelectromagnetics 18:166–171

    Google Scholar 

  33. Pfluger DH, Minder CE (1996) Effects of exposure to 16.7 Hz magnetic fields on urinary 6-hydroxymelatonin sulfate excretion of Swiss railway workers. J Pineal Res 21:91–100

    CAS  PubMed  Google Scholar 

  34. Akerstedt T, Arnetz B, Ficca G, Paulsson LE (1997) Low frequency electromagnetic fields suppress SWS. J Sleep Res 26:260

    Google Scholar 

  35. Kaune W, Davis S, Stevens R (1997) Relation between residential magnetic fields, light-at-night, and nocturnal urine melatonin levels in women. EPRI Report TR-1007242-VI

  36. Kumlin T, Hansen NH, Kilpelainen M, etal. (1997) Biological Effects of LF EMF. Norwegian Radiation Protection Authority, Oslo, Norway, pp 67–68

    Google Scholar 

  37. Burch JB, Reif JS, Yost MG, Keefe TJ, Pitrat CA (1998) Nocturnal excretion of a urinary melatonin metabolite in electric utility workers. Scand J Work Environ Health 24:183–189

    CAS  PubMed  Google Scholar 

  38. Graham C, Cook MR, Sastre A, Riffle DW, Gerkovich MM (2000) Multi-night exposure to 60 Hz magnetic fields: effects on melatonin and its enzymatic metabolite. J Pineal Res 28:1–8

    Article  CAS  PubMed  Google Scholar 

  39. Graham C, Sastre A, Cook MR, Gerkovich MM (2001) All-night exposure to EMF does not alter urinary melatonin, 6-OHMS or immune measures in older men and women. J Pineal Res 31:109–113

    CAS  PubMed  Google Scholar 

  40. Graham C, Cook MR, Gerkovich MM, Sastre A (2001) Melatonin and 6-OHMS in high-intensity magnetic fields. J Pineal Res 31:85–88

    CAS  PubMed  Google Scholar 

  41. Crasson M, Beckers V, Pequeux Ch, Claustrat B, Legros JJ (2001) Daytime 50 Hz magnetic field exposure and plasma melatonin and urinary 6-sulfatoxymelatonin concentration profiles in humans. J Pineal Res 31:234–241

    Article  CAS  PubMed  Google Scholar 

  42. Haugsdal B, Tynes T, Rotnes JS, Griffiths D (2001) A single nocturnal exposure to 27 millitesla static magnetic fields does not inhibit the excretion of 6-sulfatoxymelatonin in healthy young men. Bioelectromagnetics 22:1–6

    Article  CAS  PubMed  Google Scholar 

  43. Davis S, Kaune WT, Mirick DK, Chen C, Stevens RG (2001) Residential magnetic fields, light-at-night, and nocturnal urinary 6-sulfatoxymelatonin concentration in women. Am J Epidemiol 154:591–600

    Article  CAS  PubMed  Google Scholar 

  44. Wilson BW, Wright CW, Morris JE, etal. (1990) Evidence for an effect of ELF electromagnetic fields on human pineal gland function. J Pineal Res 9:259–269

    CAS  PubMed  Google Scholar 

  45. Hong SC, Kurukowa Y, Kabuto M, Ohtsuka R (2001) Chronic exposure to ELF magnetic fields during night sleep with electric sheet: effects on diurnal melatonin rhythms in men. Bioelectromagnetics 22:138–143

    Article  CAS  PubMed  Google Scholar 

  46. Touitou Y, Lambrozo J, Camus F, Charbuy H (2003) Magnetic fields and the melatonin hypothesis: a study of workers chronically exposed to 50 Hz magnetic fields. Am J Physiol Regul Integr Comp Physiol 284:R1529–R1535

    CAS  PubMed  Google Scholar 

  47. Wilson BW, Wright CW, Morris JE, etal. (1990) Evidence for an effect of ELF electromagnetic fields on human pineal gland function. J Pineal Res 9:259–269

    CAS  PubMed  Google Scholar 

  48. Graham C, Cook MR, Cohen HD, etal. (1993) EMF suppression of nocturnal melatonin in human volunteers. Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and Use of Electricity, October 31 – November 4 1993, Savannah, Georgia. U.S. Department of Energy: A-31

  49. Graham C, Cook MR, Cohen HD, etal. (1994) Nocturnal melatonin levels in men exposed to magnetic fields: a replicate study. Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and Use of Electricity, November 6–10 1994, Albuquerque, New Mexico. U.S. Department of Energy: A-51

  50. Burch JB, Reif JS, Yost MG, etal. (1999) Reduced excretion of a melatonin metabolite in workers exposed to 60 Hz magnetic fields. Am J Epidemiol 150:27–36

    CAS  PubMed  Google Scholar 

  51. Juutilainen J, Stevens RG, Anderson LE, etal. (2000) Nocturnal 6-hydroxymelatonin sulfate excretion in female workers exposed to magnetic fields. J Pineal Res 28:97–104

    Article  CAS  PubMed  Google Scholar 

  52. Levallois P, Dumont M, Touitou Y, etal. (2001) Effects of electric and magnetic fields from high-power lines on female urinary excretion of 6-sulfatoxymelatonin. Am J Epidemiol 154:601–609

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Touitou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touitou, Y., Bogdan, A., Lambrozo, J. et al. Is Melatonin the Hormonal Missing Link Between Magnetic Field Effects and Human Diseases?. Cancer Causes Control 17, 547–552 (2006). https://doi.org/10.1007/s10552-005-9014-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-005-9014-5

Keywords

Navigation