Cancer Causes & Control

, Volume 17, Issue 4, pp 559–571 | Cite as

The Anti-tumor Activity of Pineal Melatonin and Cancer Enhancing Life Styles in Industrialized Societies

  • Christian BartschEmail author
  • Hella Bartsch
Special Section on Cancer and Rhythm Original Paper


This review discusses the potential role of the anti-tumor activity of pineal melatonin for the aetiology and prevention of cancers related to life-styles in industrialized societies, e.g. frequent long-distance flights as well as chronic night shift work leading to circadian disturbances of neuroendocrine parameters including melatonin. Experimental studies show that melatonin controls not only the growth of well-differentiated cancers, but also possesses anti-carcinogenic properties. Therefore, it is plausible that disturbances of circadian melatonin rhythmicity could be functionally involved in elevated cancer risks among aircrew members and nurses frequently working on night shifts. Due to the suppression of melatonin by light it can be assumed that too much artificial light at night could, at least in part, be responsible for generally increasing rates of e.g. breast cancer in industrialized countries. It is discussed under which conditions a transient substitutional therapy with melatonin could be justified or which forms of living could help to physiologically foster melatonin secretion to optimise control over cancerous growth and development.


Cancer risk Experimental cancer Jet lag Melatonin Night shift work 


  1. 1.
    Ariens Kappers J (1979) Short history of pineal discovery and research. Prog Brain Res 52:3–22Google Scholar
  2. 2.
    Engel P, Bergmann W (1952) Die physiologische Funktion der Zirbeldrüse und ihre therapeutische Anwendung. Zeitschrift Vitamin-, Hormon- u Fermentforschung VI(6):564–594Google Scholar
  3. 3.
    Engel P (1935) Wachstumsbeeinflussende Hormone und Tumorwachstum. Z Krebsforsch 41:488–496Google Scholar
  4. 4.
    Bergmann W, Engel P (1950) Über den Einfluβ von Zirbelextrakten auf Tumoren bei weiβen Mäusen und bei Menschen. Wien Klin Wschr 62:79–82Google Scholar
  5. 5.
    Hofstätter R (1959) Versuche der postoperativen Krebsbehandlung mit Zirbelstoffen. Krebsarzt 14:307–316Google Scholar
  6. 6.
    Altieri A, Sorrentino F (1956) Eine neue Hormontherapie des Prostatakrebses. Die Epiphysenextrakte. Urologia Internat (Basel) 2:312–350Google Scholar
  7. 7.
    Bibus B (1957) Der heutige Stand der Behandlung des Prostata-Carzinoms. Dtsch med J 11:560–563Google Scholar
  8. 8.
    Rodin AE (1963) The growth and spread of Walker 256 carcinoma in pinealectomized rats. Cancer Res 23:1545–1550PubMedGoogle Scholar
  9. 9.
    Barone RM, Abe R, Das Gupta TK (1972) Pineal ablation in methylcholanthrene induced fibrosarcoma. Surg Forum 23:115–116PubMedGoogle Scholar
  10. 10.
    Relkin (1976) The pineal and human disease. In: Relkin R (ed.) Annual Research Reviews: The Pineal, Lancaster; Eden Press, 76–79Google Scholar
  11. 11.
    Lerner AB, Case JD, Takahashi Y (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Amer Chem Soc 80:2587CrossRefGoogle Scholar
  12. 12.
    Lapin V (1976) Pineal gland and malignancy. Österreich Zeitschr Onkologie 3:51–59Google Scholar
  13. 13.
    Starr KW (1970) Growth and new growth: environmental carcinogens in the process of human ontogeny. Prog Clin Cancer 4:1–29PubMedGoogle Scholar
  14. 14.
    Reiter RJ (1978) Interaction of photoperiod, pineal and seasonal reproduction as exemplified by findings in the hamster. Prog Reprod Biol 4:169–190Google Scholar
  15. 15.
    Bartsch H, Bartsch C (1981) Effect of melatonin on experimental tumors under different photoperiods and times of administration. J Neural Transm 52:269–279PubMedGoogle Scholar
  16. 16.
    Wrba H, Halberg F, Dutter A (1983) Melatonin circadian-stage dependently delays breast tumor development in mice injected daily for several months. Chronobiologia 13:123–128Google Scholar
  17. 17.
    Arendt J (1985) Mammalian pineal rhythms. Pineal Res Rev 3:161–213Google Scholar
  18. 18.
    Blask DE (2001) An overview of the neuroendocrine regulation of experimental tumor growth by melatonin and its analogues and the therapeutic use of melatonin in oncology. In: Bartsch C, Bartsch H, Cardinali DP, Hrushesky WJM, Mecke D (eds) The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer-Verlag, Berlin, pp 309–342Google Scholar
  19. 19.
    Subramaniam A, Kothari L (1991) Melatonin, a suppressor of spontaneous murine mammary tumors. J Pineal Res 10:136–140Google Scholar
  20. 20.
    Blask DE, Pelletier DB, Hill SM (1991) Pineal melatonin inhibition of tumor promotion in the N-nitroso-N-methylurea model of mammary carcinogenesis: potential involvement of antiestrogenic mechanisms in vivo. J Cancer Res Clin Oncol 117:526–532CrossRefPubMedGoogle Scholar
  21. 21.
    Shah PN, Mhatre MG, Kothari LS (1984) Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res 44:3403–3407PubMedGoogle Scholar
  22. 22.
    Tamarkin L, Cohen M, Roselle D (1981) Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res 41:4432–4436PubMedGoogle Scholar
  23. 23.
    Lee C, Lapin V, Oyasu R (1981) Effect of ovariectomy on serially transplanted rat mammary tumours induced by 7,12-dimethylbenz(a)anthracene. Eur J Cancer Clin Oncol 17:801–808PubMedGoogle Scholar
  24. 24.
    Bartsch C, Szadowska A, Karasek M, Bartsch H, Geppert M, Mecke D (2000) Serial transplants of DMBA-induced mammary tumors in Fischer rats as model system for human breast cancer: V. Myoepithelial-mesenchymal conversion during passaging as possible cause for modulation of pineal-tumor interaction. Exp Toxic Pathol 52:93–101Google Scholar
  25. 25.
    Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277–279CrossRefPubMedGoogle Scholar
  26. 26.
    Dandachi N, Hauser-Kronberger C, More E, Wiesener B, Hacker GW, Dietze O, Wirl D (2001) Co-expression of tenascin C and vimentin in human breast cancer cells indicates phenotypic transdifferentiation during tumour progression: correlation with histopathological parameters, hormone receptors, and oncoproteins. J Pathol 193:181–189CrossRefPubMedGoogle Scholar
  27. 27.
    Petersen OW, Nielsen HL, Gudjonsson T, Villadsen R, Rank F, Niebuhr E, Bissell MJ, Ronnov-Jessen L (2003) Epithelial to mesenchymal transition in human breast cancer can provide a non-malignant stroma. Am J Pathol 162:391–402PubMedGoogle Scholar
  28. 28.
    Bartsch H, Bartsch C, Mecke D, Lippert TH (1994) Differential effect of melatonin on early and advanced passages of a DMBA-induced mammary carcinoma in the female rat. In: Maestroni GJM, Conti A, Reiter RJ (eds) Advances in Pineal Research, Vol. 7, John Libbey, London, pp 247–252Google Scholar
  29. 29.
    Bartsch C, Bartsch H, Buchberger A, Stieglitz A, Mecke D, Lippert TH (1994) Serial transplants of DMBA-induced mammary tumors in Fischer rats as model system for human breast cancer: II. Analysis of pineal melatonin biosynthesis and secretion. In: Møller M, Pévet P (eds) Advances in Pineal Research, Vol. 8: John Libbey, London, pp 479–484Google Scholar
  30. 30.
    Bartsch C, Bartsch H, Buchberger A, Stieglitz A, Effenberger-Klein A, Kruse-Jarres JD, Besenthal I, Rokos H, Mecke D (1999) Serial transplants of DMBA-induced mammary tumors in Fischer rats as a model system for human breast cancer. VI. The role of different forms of tumor-associated stress for the regulation of pineal melatonin secretion. Oncology 56:169–176CrossRefPubMedGoogle Scholar
  31. 31.
    Bartsch H, Bartsch C, Mecke D (2001) The modulation of melatonin in tumor-bearing animals: underlying mechanisms and possible significance for prognosis. In: Bartsch C, Bartsch H, Cardinali DP, Hrushesky WJM, Mecke D (eds) The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer-Verlag, Berlin, pp 197–209Google Scholar
  32. 32.
    Maestroni GJ, Conti A (1996) Melatonin in human breast cancer tissue: association with nuclear grade and estrogen receptor status. Lab Invest 75:557–561PubMedGoogle Scholar
  33. 33.
    Bartsch H, Bartsch C, Mecke D, Lippert TH (1994) Serial transplants of DMBA-induced mammary tumors in Fischer rats as model system for human breast cancer: I. Effect of melatonin and pineal extracts on slow- and fast-growing passages – in vivo and in vitro studies. In: Møller M, Pévet P (eds) Advances in Pineal Research, Vol. 8, John Libbey, London, pp 473–478Google Scholar
  34. 34.
    Bartsch C, Bartsch H, Flüchter STH, Mecke D, Lippert TH (1994) Diminished pineal function coincides with disturbed circadian endocrine rhythmicity in untreated primary cancer patients: consequence of premature aging or of tumor growth? Ann NY Acad Sci 719:502–525PubMedGoogle Scholar
  35. 35.
    Danforth DN, Tamarkin L, Lippman M (1984) Melatonin induction of oestrogen receptor hormone binding activity is associated with inhibition of E2-stimulated growth of MCF-7 human breast cancer cells. Int Cong Endocrinol 494–507Google Scholar
  36. 36.
    Hill SM, Blask DE (1988) Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res 48:6121–6125PubMedGoogle Scholar
  37. 37.
    Blask DE (1993) Melatonin in oncology. In: Yu H-S, Reiter RJ (eds) Melatonin: Biosynthesis, Physiological Effects and Clinical Applications. CRC Press, Boca Raton, pp 447–475Google Scholar
  38. 38.
    Shellard SA, Whelan RDH, Hill BT (1989) Growth inhibitory and cytotoxic effects of melatonin and its metabolites on human tumour cell lines in vitro. Br J Cancer 60:288–290PubMedGoogle Scholar
  39. 39.
    Molis T, Walters MR, Hill SM (1993) Melatonin modulation of estrogen receptor expression in MCF-7 human breast cancer cells. Int J Oncol 3:687–694Google Scholar
  40. 40.
    Lupowitz Z, Zisapel N (1999) Hormonal interactions in human prostate tumor LNCaP cells. J Steroid Biochem Mol Biol 68:83–88CrossRefPubMedGoogle Scholar
  41. 41.
    Moretti RN, Marelli MM, Maggi R (2000) Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep 7:47–51Google Scholar
  42. 42.
    Meyskens FL, Salmon SF (1981) Modulation of clonogenic melanoma cells by follicle-stimulating hormone, melatonin and nerve growth factor. Br J Cancer 43:111–115PubMedGoogle Scholar
  43. 43.
    Karasek M, Kunert-Radek J, Stepien H (1988) Melatonin inhibits the proliferation of estrogen-induced rat pituitary tumor cells in vitro. Neuroendorinol Lett 10:135–140Google Scholar
  44. 44.
    Bartsch H, Bartsch C, Simon WE, Flehmig B, Ebels I, Lippert TH (1992) Antitumor activity of the pineal gland: effect of unidentified substances versus the effect of melatonin. Oncology 49:27–30PubMedGoogle Scholar
  45. 45.
    L’Hermite-Balerieux M, de Launoit Y (1992) Is melatonin really an in vitro inhibitor of human breast cancer cell proliferation? In Vitro Cell Dev Biol 28A:583–584Google Scholar
  46. 46.
    Cos S, Sanchez-Barcelo EJ (2001) In vitro effects of melatonin on tumor cells. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D, eds. The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer, Berlin, pp 221–239Google Scholar
  47. 47.
    Ram PT, Yuan L, Dai J (2000) Differential responsiveness of MCF-7 human breast cancer cell line stocks to the pineal hormone melatonin. J Pineal Res 28:210–218CrossRefPubMedGoogle Scholar
  48. 48.
    Bartsch H, Buchberger A, Franz F, Bartsch C, Maidonis I, Mecke D, Bayer E (2000) Effect of melatonin and pineal extracts on human ovarian and mammary tumor cells in a chemosensitivity assay. Life Sci 67:2953–2960CrossRefPubMedGoogle Scholar
  49. 49.
    Kanishi Y, Kobayashi Y, Noda S (2000) Differential growth inhibitory effect of melatonin on two endometrial cancer cell lines. J Pineal Res 28:227–233CrossRefPubMedGoogle Scholar
  50. 50.
    Xi SC, Siu SW, Fong SW (2001) Inhibition of androgen-sensitive LNCaP prostate cancer growth in vivo by melatonin: association of antiproliferative action of the pineal hormone with mt1 receptor protein expression. Prostate 46:52–61CrossRefPubMedGoogle Scholar
  51. 51.
    Dillon DC, Easley SE, Asch BB (2002) Differential expression of high-affinity melatonin receptors (MT1) in normal and malignant human breast tissue. Am J Clin Pathol 118:451–458PubMedGoogle Scholar
  52. 52.
    Ram PT, Dai J, Yuan L. Dong C, Kiefer TL, Lai L, Hill SM (2002) Involvement of the mt1 melatonin receptor in human breast cancer. Cancer Lett 179:141–150CrossRefPubMedGoogle Scholar
  53. 53.
    Dai J, Ram PT, Yuan L, Spriggs LL, Hill SM (2001) Transcriptional repression of RORα activity in human breast cancer cells by melatonin. Mol Cell Endocrinol 176:111–120CrossRefPubMedGoogle Scholar
  54. 54.
    Girgert R, Bartsch C, Hill SM, Kreienberg R, Hanf V (2003) Tracking the elusive antiestrogenic effect of melatonin: a new methodological approach. Neuroendocrinol Lett 24:440–444PubMedGoogle Scholar
  55. 55.
    Bartsch H, Bartsch C, Flehmig B (1986) Differential effect of melatonin on slow and fast growing passages of a human melanoma cell line. Neuroendocrinol Lett 8:289–293Google Scholar
  56. 56.
    Pink JJ, Jordan VC (1996) Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res 56:2321–2330PubMedGoogle Scholar
  57. 57.
    Hill SM, Kiefer T, Teplitzky S, Spriggs LL, Ram P (2001) Modulation of the estrogen response pathway in human breast cancer cells by melatonin. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D (eds) The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer-Verlag, Berlin, pp 343–358Google Scholar
  58. 58.
    Bartsch C, Bartsch H, Lippert TH, Gupta D (1990) Effect of the mammary carcinogen 7,12-dimethylbenz(a)anthracene on pineal melatonin biosynthesis, secretion, and peripheral metabolism. Neuroendocrinology 52:538–544PubMedGoogle Scholar
  59. 59.
    De Jonage-Canonico MB, Lenoir V, Martin A, Scholler R, Kerdelhue B (2003) Long-term inhibition by estradiol or progesterone of melatonin secretion after administration of a mammary carcinogen, the dimethylbenz(a)anthracene, in Sprague-Dawley female rat; inhibitory effect of melatonin on mammary carcinogenesis. Breast Cancer Res Treat 79:365–377PubMedGoogle Scholar
  60. 60.
    Kopin IJ, Pare CMB, Axelrod J (1961) The fate of melatonin in animals. J Biol Chem 236:3072–3075PubMedGoogle Scholar
  61. 61.
    Jones RL, McGeer PL, Greiner AC (1969) Metabolism of exogenous melatoninin in schizophrenic and nonschizophrenic volunteers. Clin Clim Acta 26:281–285Google Scholar
  62. 62.
    Praast G, Bartsch C, Bartsch H, Mecke D, Lippert TH (1995) Hepatic hydroxylation of melatonin in the rat is induced by phenobarbital and 7,12-dimethylbenz(a)anthracene - implications for cancer etiology. Experientia 51:349–355CrossRefPubMedGoogle Scholar
  63. 63.
    Skene DJ, Papagiannidou E, Hashemi E, Snelling J, Lewis DFV, Fernandez M, Ioannides C (2001) Contribution of CYP1A2 in the hepatic metabolism of melatonin: studies with isolated microsomal preparations and liver slices. J Pineal Res 31:333–342CrossRefPubMedGoogle Scholar
  64. 64.
    Facciola G, Hidestrand M, von Bahr C, Tybring G (2001) Cytochrome P-450 isoforms involved in melatonin metabolism in human liver microsomes .Eur J Clin Pharmacol 56:881–888PubMedGoogle Scholar
  65. 65.
    Ma X, Idle JR, Krausz KW, Gonzalez FJ (2005) Metabolism of melatonin by human cytochromes P450. Drug Metab Dispos 33: 489–494CrossRefPubMedGoogle Scholar
  66. 66.
    Kothari L, Subramaniam A (1992) A possible modulatory influence of melatonin on representative phase I and II drug metabolizing enzymes in 9,10-dimethylbenzanthracene induced rat mammary tumorigenesis. Anti-Cancer Drugs 3:623–628PubMedGoogle Scholar
  67. 67.
    Subramaniam A, Kothari L (1991) Suppressive effect by melatonin on different phases of 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced rat mammary gland carcinogenesis. Anticancer Drugs 2:297–303Google Scholar
  68. 68.
    Vijayalaxmi, Reiter RJ, Tan D-X, Herman TS, Thomas CR (2004) Melatonin as a radioprotective agent: a review. Int J Radiation Oncology Biol Phys 59:639–653CrossRefGoogle Scholar
  69. 69.
    Reiter RJ (2001) Reactive oxygen species, DNA damage, and carcinogenesis: Intervention with melatonin. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D (eds) The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer-Verlag, Berlin, pp 442–455Google Scholar
  70. 70.
    Brainard GC, Lewy AJ, Menaker M, Fredrickson RH, Miller LS, Weleber RG, Cassone V, Hudson D (1988) Dose–response relationship between light irradiance and the suppression of plasma melatonin in human volunteers. Brain Res 454:212–218CrossRefPubMedGoogle Scholar
  71. 71.
    Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93:1557–1562PubMedGoogle Scholar
  72. 72.
    Schernhammer ES, Laden F, Speizer RF, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568PubMedGoogle Scholar
  73. 73.
    Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA (2003) Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst 95:825–888PubMedGoogle Scholar
  74. 74.
    Stevens RG (2002) Lighting during the day and night: Possible impact on risk of breast cancer. Neuroendocrinol Lett 23(Suppl 2):57–60PubMedGoogle Scholar
  75. 75.
    Schernhammer ES, Schulmeister K (2004) Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer 90:941–943CrossRefPubMedGoogle Scholar
  76. 76.
    Schernhammer ES, Rosner B, Willett WC, Laden F, Colditz GA, Hankinson SE (2004) Epidemiology of urinary melatonin in women and its relation to other hormones and night work. Cancer Epidemiol Biomarkers Prev 13:936–943PubMedGoogle Scholar
  77. 77.
    Feychting M, Osterlund B, Ahlbom A (1998) Reduced cancer incidence among the blind. Epidemiology 9:490–494PubMedGoogle Scholar
  78. 78.
    Verkasalo PK, Pukkala E, Stevens RG, Ojamo M, Rudanko SL (1999) Inverse association between breast cancer incidence and degree of visual impairment in Finland. Br J Cancer 80:1459–1460CrossRefPubMedGoogle Scholar
  79. 79.
    Provincio I, Rodriguez IR, Jian G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosc 20:600–605Google Scholar
  80. 80.
    Sigurdson AJ, Ron E (2004) Cosmic radiation exposure and cancer risk among flight crew. Cancer Invest 22:743–761CrossRefPubMedGoogle Scholar
  81. 81.
    Lim MK (2002) Cosmic rays: are air crew at risk? Occup Environ Med 59:428–432CrossRefPubMedGoogle Scholar
  82. 82.
    Filipski E, Delaunay F, King VM, Wu MW, Claustrat B, Grechez-Cassiau A, Guettier C, Hastings MH, Levi F (2004) Effects of chronic jet lag on tumor progression in mice. Cancer Res 64:7879–7885CrossRefPubMedGoogle Scholar
  83. 83.
    Li XM, Liu XH, Filipski E, Metzger G, Delagrange P, Jeanniot JP, Levi F (2000) Relationship of atypical melatonin rhythm with two circadian clock outputs in B6D2F(1) mice. Am J Physiol Regul Integr Comp Physiol 278:R924–R930PubMedGoogle Scholar
  84. 84.
    Mokbel K (2003) Risk-reducing strategies for breast cancer – a review of recent literature. Int J Fertil Womens Med 48:274–277PubMedGoogle Scholar
  85. 85.
    Kerenyi NA, Pandula E, Feuer G (1990) Why the incidence of cancer is increasing: the role of “light pollution”. Med Hypotheses 33:75–78CrossRefPubMedGoogle Scholar
  86. 86.
    Vollrath L (2001) Biology of the pineal gland and melatonin in humans. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D (eds) The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer-Verlag, Berlin, pp 5–49Google Scholar
  87. 87.
    Cardinali DP, Cutrera RA, Brusco LL (2001) The role of melatonin in the neuroendocrine system: multiplicity of sites and mechanism of action. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D (eds) The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer-Verlag, Berlin, pp 50–65Google Scholar
  88. 88.
    Maestroni GJM (2001) Melatonin and the immune system: therapeutic potential in cancer, viral diseases, and immunodeficiency states. In: Bartsch C, Bartsch H, Blask DE, Cardinali DP, Hrushesky WJM, Mecke D (eds) The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Springer-Verlag, Berlin, pp 384–394Google Scholar
  89. 89.
    Greenberg MR (1983) Urbanization and cancer: changing mortality patterns. Int Reg Sci Rev 8:127–145PubMedGoogle Scholar
  90. 90.
    Lockley SW, Brainard GC, Czeisler A (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Endocrinol Metab 88:4502–4505Google Scholar
  91. 91.
    Herxheimer A, Petrie KJ (2002) Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev 2002(2):CD0011520Google Scholar
  92. 92.
    Sharkey KM, Eastman CL (2002) Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study. Am J Physiol Regul Integr Comp Physiol 282:454–463Google Scholar
  93. 93.
    Burgess HJ, Sharkey KM, Eastman CI (2002) Bright light, dark and melatonin can promote circadian adaptation in night shift worker. Sleep Med Rev 6:407–420PubMedGoogle Scholar
  94. 94.
    Conti A, Haran-Ghera N, Maestroni GJM (1992) Role of pineal melatonin and melatonin-induced opioids in murine leukemogenesis. Med Oncol Tumor Pharmacother 9:87–92PubMedGoogle Scholar
  95. 95.
    Stevens RG, Davis S, Mirick DK, Keifets L, Kaune W (2000) Alcohol consumption and urinary concentration of 6-sulphatoxymelatonin in healthy women. Epidemiology 11:660–665PubMedGoogle Scholar
  96. 96.
    Atkinson G, Drust B, Reilly T, Waterhouse J (2003) The relevance of melatonin in sports medicine and science. Sports Med 33:809–831CrossRefPubMedGoogle Scholar
  97. 97.
    Roth GS, Lesnikov V, Lesnikov M, Ingram DK, Lane MA (2001) Dietary caloric restriction prevents the age-related decline in plasma melatonin levels of rhesus monkey. J Clin Endocrinol Metab 86:3292–3295CrossRefPubMedGoogle Scholar
  98. 98.
    Prunet-Marcassus B, Desbazeille M, Bros A, Louche K, Delagrange P, Renard L, Casteilla L, Penicaud L (2003) Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity. Endocrinology 144:5347–5352CrossRefPubMedGoogle Scholar
  99. 99.
    Sauer LA, Dauchy RT, Blask DE (2001) Polyunsaturated fatty acids, melatonin, and cancer prevention Biochem Pharmacol 61:1455–1462CrossRefPubMedGoogle Scholar
  100. 100.
    Sauer LA, Dauchy RT, Blask DE (2001) Melatonin inhibits fatty acid transport in inguinal fat pads of hepatoma 7288CTC-bearing and normal Buffalo rats via receptor-mediated signal transduction. Life Sci 68:2835–2844CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Center for Research in Medical and Natural Sciences (MNF)University of TübingenTübingenGermany

Personalised recommendations