Skip to main content

Statistics and Probability Have Always Been Value-Laden: An Historical Ontology of Quantitative Research Methods

Abstract

Quantitative researchers often discuss research ethics as if specific ethical problems can be reduced to abstract normative logics (e.g., virtue ethics, utilitarianism, deontology). Such approaches overlook how values are embedded in every aspect of quantitative methods, including ‘observations,’ ‘facts,’ and notions of ‘objectivity.’ We describe how quantitative research practices, concepts, discourses, and their objects/subjects of study have always been value-laden, from the invention of statistics and probability in the 1600s to their subsequent adoption as a logic made to appear as if it exists prior to, and separate from, ethics and values. This logic, which was embraced in the Academy of Management from the 1960s, casts management researchers as ethical agents who ought to know about a reality conceptualized as naturally existing in the image of statistics and probability (replete with ‘constructs’), while overlooking that S&P logic and practices, which researchers made for themselves, have an appreciable role in making the world appear this way. We introduce a different way to conceptualize reality and ethics, wherein the process of scientific inquiry itself requires an examination of its own practices and commitments. Instead of resorting to decontextualized notions of ‘rigor’ and its ‘best practices,’ quantitative researchers can adopt more purposeful ways to reason about the ethics and relevance of their methods and their science. We end by considering implications for addressing ‘post truth’ and ‘alternative facts’ problems as collective concerns, wherein it is actually the pluralistic nature of description that makes defending a collectively valuable version of reality so important and urgent.

This is a preview of subscription content, access via your institution.

References

  • Abbott, A. (1991). The order of professionalization: An empirical analysis. Work and Occupations, 18, 355–384.

    Google Scholar 

  • Abbott, A. (1998). The causal devolution. Sociological Methods and Research, 27, 148–181.

    Google Scholar 

  • Adams, W. J. (2009). The life and times of the central limit theorem. Providence, RI: American Mathematical Society.

    Google Scholar 

  • Aguinis, H., Werner, S., Abbott, J. L., Angert, C., Park, J. H., & Kohlhausen, D. (2010). Customer-centric science: Reporting significant research results with rigor, relevance, and practical impact in mind. Organizational Research Methods, 13, 515–539.

    Google Scholar 

  • Alanen, L. (2003). Descartes’s concept of mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Aldrich, J. (1997). Fisher and the making of maximum likelihood 1912-1922. Statistical Science, 12, 133–220.

    Google Scholar 

  • Aldrich, J. (2008). R. A. Fisher on Bayes and Bayes’ theorem. Bayesian Analysis, 3, 161–170.

    Google Scholar 

  • Alonso, W., & Starr, P. (Eds.). (1987). The politics of large numbers. New York: Russell Sage.

    Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  • Ariew, A. (2007). Under the influence of Malthus’s law of population growth: Darwin eschews the statistical techniques of Adolphe Quetelet. Studies in the History and Philosophy of Biology and Biomedicine, 38, 1–19.

    Google Scholar 

  • Arnauld, A., & Nicole, P. (1662/1996). Logic or the art of thinking. Cambridge, UK: Cambridge University Press.

  • Augier, M., & March, J. G. (2011). The roots, rituals, and rhetorics of change: North American business schools after the second world war. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Bayes, T. P. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53, 370–418.

    Google Scholar 

  • Bernoulli, J. (1713/2006). The art of conjecturing (together with letter to a friend on sets in court tennis) (E. D. Sylla, Trans. & Ed.). Baltimore, MD: Johns Hopkins University Press.

  • Bernthal, W. F. (1960). Integrating the behavioral sciences and management. The Journal of the Academy of Management, 3, 161–166.

    Google Scholar 

  • Biagioli, M. (2002). From book censorship to academic peer review. Emergences: Journal for the Study of Media and Composite Cultures, 12, 11–45.

    Google Scholar 

  • Biagioli, M. (2006). Galileo’s instruments of credit: Telescopes, images, secrecy. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Bornemann, A. (1961). The development of the teaching of management in the school of business. The Journal of the Academy of Management, 4, 129–136.

    Google Scholar 

  • Bromhead, H. (2009). The reign of truth and faith: Epistemic expressions in the 16th and 17th century English. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Byrne, E. F. (1968). Probability and opinion: A study of the medieval presuppositions of post-medieval theories of probability. The Hague: Matinus Nijhoff.

    Google Scholar 

  • Casler, C., & du Gay, P. (2019). Stances, paradigms, personae. Studi di Sociologia, 1, 69–80.

    Google Scholar 

  • Caton, H. (1973). The origin of subjectivity. New Haven, CT: Yale University Press.

    Google Scholar 

  • Cohen, I. B. (1987). Scientific revolutions, revolutions in science, and a probabilistic revolution 1800-1930. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 23–44). Cambridge, MA: MIT Press.

    Google Scholar 

  • Cooke, B., & Alcadipani, R. (2015). Toward a global history of management education: The case of the Ford Foundation and the São Paulo School of Business Administration, Brazil. Academy of Management Learning & Education, 14, 482–499.

    Google Scholar 

  • Cortina, J. (2019). On the whys and hows of quantitative research. Journal of Business Ethics. https://doi.org/10.1007/s10551-019-04195-8.

    Article  Google Scholar 

  • Dale, A. I. (1999). A history of inverse probability: From Thomas Bayes to Karl Pearson (2nd ed.). New York: Springer.

    Google Scholar 

  • Danziger, K. (1990). Constructing the subject: Historical origins of psychological research. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Daston, L. (1987a). The domestication of risk: Mathematical probability and insurance 1650-1830. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 238–260). Cambridge, MA: MIT Press.

    Google Scholar 

  • Daston, L. (1987b). Rational individuals versus laws of society: From probability to statistics. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 295–304). Cambridge, MA: MIT Press.

    Google Scholar 

  • Daston, L. (1992). Objectivity and the escape from perspective. Social Studies of Science, 22, 597–618.

    Google Scholar 

  • Daston, L. (1994). How probability came to be objective and subjective. Historia Mathematica, 21, 330–344.

    Google Scholar 

  • Daston, L. (1995). Classical probability in the enlightenment. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Daston, L. (2005). Scientific error and the ethos of belief. Social Research, 72, 1–28.

    Google Scholar 

  • Daston, L., & Galison, P. (2007). Objectivity. Brooklyn, NY: Zone Books.

    Google Scholar 

  • Daston, L., & Vidal, F. (Eds.). (2004). The moral authority of nature. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • De Morgan, A. (1838/2010). An essay on probabilities: And their application to life contingencies and insurance offices. Charleston, SC: BiblioLife, LLC.

  • Dear, P. (2001). Revolutionizing the sciences: European knowledge and its ambitions, 1500-1700. London: Palgrave.

    Google Scholar 

  • Desrosières, A. (1998). The politics of large numbers: A history of statistical reasoning, C. Naish (trans.). Cambridge, UK: Harvard University Press.

  • Dewey, J. (1929). The quest for certainty. New York: Minton, Balch, & Co.

    Google Scholar 

  • Dewey, J. (1938). Logic: The theory of inquiry. New York: Henry Holt and Company.

    Google Scholar 

  • Douglas, H. E. (2009). Science, policy, and the value-free ideal. Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  • Duncan, O. D. (1984). Notes on social measurement: Historical and critical. New York: Russell Sage.

    Google Scholar 

  • Edwards, J. R. (2010). Reconsidering theoretical progress in organizational and management research. Organizational Research Methods, 13, 615–619.

    Google Scholar 

  • Edwards, J. R. (2019). The peaceful coexistence of ethics and quantitative research. Journal of Business Ethics. https://doi.org/10.1007/s10551-019-04197-6.

    Article  Google Scholar 

  • Ezzamel, M., & Willmott, H. (2014). Registering ‘the ethical’ in organization theory formation: Towards the disclosure of an ‘invisible force’. Organization Studies, 35, 1–27.

    Google Scholar 

  • Fischer, H. (2010). A history of the central limit theorem: From classical to modern probability theory. New York: Springer.

    Google Scholar 

  • Fisher, R. A. (1915). The frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10, 507–521.

    Google Scholar 

  • Fisher, R. A. (1921). On the “probable error” of a correlation coefficient deduced from a small sample. Metron, 1, 3–32.

    Google Scholar 

  • Fisher, R. A. (1922a). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, A, 222, 309–368.

    Google Scholar 

  • Fisher, R. A. (1922b). The goodness of fit of regression formulae and the distribution of regression coefficients. Journal of the Royal Statistical Society, 85, 597–612.

    Google Scholar 

  • Fisher, R. A. (1924). The distribution of the partial correlation coefficient. Metron, 3, 329–332.

    Google Scholar 

  • Fisher, R. A. (1925a). Applications of “Student’s” distribution. Metron, 5, 90–104.

    Google Scholar 

  • Fisher, R. A. (1925b). Statistical methods for research workers. Edinburgh: Oliver & Boyd Ltd.

    Google Scholar 

  • Fisher, R. A. (1925c). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, 700–725.

    Google Scholar 

  • Fisher, R. A. (1928). The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal Society, A, 121, 654–673.

    Google Scholar 

  • Fisher, R. A. (1929). Moments and product moment of sampling distributions. Proceedings of the London Mathematical Society, Series, 2(30), 199–238.

    Google Scholar 

  • Fisher, R. A. (1935a). The design of experiments. Edinburgh: Oliver & Boyd Ltd.

    Google Scholar 

  • Fisher, R. A. (1935b). The logic of inductive inference. Journal of the Royal Statistical Society, 98, 39–54.

    Google Scholar 

  • Fisher, R. A. (1955). Statistical methods and scientific induction. Journal of the Royal Statistical Society: Series B, 17, 69–78.

    Google Scholar 

  • Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Fisher, R. A., & Yates, F. (1943). Statistical tables for biological, agricultural and medical research. Edinburgh, UK: Oliver & Boyd Ltd.

    Google Scholar 

  • Foucault, M. (1970). The order of things: An archaeology of the human sciences. New York: Random House.

    Google Scholar 

  • Foucault, M. (1980). Power/knowledge: Selected interviews and other writings. New York: Random House.

    Google Scholar 

  • Foucault, M. (2003). Abnormal: Lectures at the college de France 1974-1975. New York: Graham Burchell.

    Google Scholar 

  • Foucault, M. (2008). The birth of biopolitics Lectures at the college de France 1978-1979. New York: Graham Burchell.

    Google Scholar 

  • Freedman, D. A. (2005). Linear statistical models for causation: A critical review. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (Vol. 2, pp. 1061–1073). Chichester, UK: Wiley.

    Google Scholar 

  • Galavotti, M. C. (2005). Philosophical introduction to probability. Palo Alto, CA: CSLI.

    Google Scholar 

  • Galileo, G. (2008). The essential Galileo (M. A. Finocchiaro, Ed.). Indianapolis, IN: Hackett Publishing.

  • Galton, G. (1869/2010). Hereditary genius: An inquiry into its laws and consequences. Memphis, TN: General Books.

  • Galton, F. (1889/2010). Natural inheritance. Charleston, SC: Nabu Press.

  • Garber, D. (1992). Descartes’ physics. In J. Cottingham (Ed.), The Cambridge companion to Descartes. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Gauss, C. F. (1809/2010). Theory of the motion of the heavenly bodies moving about the sun in conic sections (C. H. Davis, Trans.). Charleston, SC: Nabu Press.

  • Gigerenzer, G. (1998). We need statistical thinking, not statistical rules. Behavioral and Brain Sciences, 21, 199–200.

    Google Scholar 

  • Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics, 33, 587–606.

    Google Scholar 

  • Gigerenzer, G., & Marewski, J. N. (2015). Surrogate science: The idol of a universal method for scientific inference. Journal of Management, 41, 421–440.

    Google Scholar 

  • Gigerenzer, G., & Murray, D. J. (1987). Cognition as intuitive statistics. Hillsdale, MI: Erlbaum.

    Google Scholar 

  • Gigerenzer, G., Swijtink, Z., Porter, T., Daston, L., Beatty, J., & Krüger, L. (1989). The empire of chance. How probability changed science and everyday life. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Goldman, L. (1983). The origins of British ‘social science’: Political economy, natural science and statistics, 1830-1835. The Historical Journal, 26, 587–616.

    Google Scholar 

  • Golembiewski, R. T. (1961). Management science and group behavior: Work-unit cohesiveness. Journal of the Academy of Management, 4, 87–99.

    Google Scholar 

  • Gordon, R. A., & Howell, J. E. (1959). Higher education for business. New York: Columbia University Press.

    Google Scholar 

  • Greenwood, M. (2016). Approving or improving research ethics in management journals. Journal of Business Ethics, 137, 1–14.

    Google Scholar 

  • Hacking, I. (1965). Logic of statistical inference. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hacking, I. (1975). Why does language matter to philosophy?. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hacking, I. (1978). Hume’s species of probability. Philosophical Studies, 33, 21–37.

    Google Scholar 

  • Hacking, I. (1986). The archaeology of Foucault. In D. C. Hoy (Ed.), Foucault: A critical reader (pp. 27–40). Oxford, UK: Blackwell.

    Google Scholar 

  • Hacking, I. (1987). Was there a probabilistic revolution 1800-1930? In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 45–55). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hacking, I. (1990). The taming of chance. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hacking, I. (1991). How should we do the history of statistics? In G. Burchell, C. Gordon, & P. Miller (Eds.), The Foucault effect (pp. 181–195). Chicago, IL: Chicago University Press.

    Google Scholar 

  • Hacking, I. (1992). Statistical language, statistical truth and statistical reason: The self-authentification of a style of scientific reasoning. In E. McMullin (Ed.), The social dimensions of science (Vol. 3, pp. 130–157). Notre Dame, IN: University of Notre Dame Press.

    Google Scholar 

  • Hacking, I. (1999). The social construction of what?. Cambridge, UK: Harvard University Press.

    Google Scholar 

  • Hacking, I. (2002). Historical ontology. Cambridge, UK: Harvard University Press.

    Google Scholar 

  • Hacking, I. (2006). The emergence of probability: A philosophical study of early ideas about probability, induction and statistical inference (2nd ed.). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hacking, I. (2009). Scientific reasoning. Taipei: NTU Press.

    Google Scholar 

  • Hald, A. (2007). A history of parametric statistical inference from Bernoulli to Fisher, 1713-1935. New York: Springer.

    Google Scholar 

  • Halff, J. F. (1960). Applying the scientific method to the study of management. The Journal of the Academy of Management, 3, 193–196.

    Google Scholar 

  • Hardy, C., Phillips, N., & Clegg, S. R. (2001). Reflexivity in organization and management theory: A study of the production of the research ‘subject’. Human Relations, 54, 531–560.

    Google Scholar 

  • Hennig, B. (2007). Cartesian conscientia. British Journal for the History of Philosophy, 15, 455–484.

    Google Scholar 

  • Henry, J. (2004). Metaphysics and the origins of modern science: Descartes and the importance of laws of nature. Early Science and Medicine, 9, 73–114.

    Google Scholar 

  • Honig, B., Lampel, J., Siegel, D., & Drnevich, P. (2017). Special section on ethics in management research: Norms, identity, and community in the 21st century. Academy of Management Learning & Education, 16, 84–93.

    Google Scholar 

  • Hopwood, N., Schaffer, S., & Secord, J. (2010). Seriality and scientific objects in the nineteenth century. History of Science, 48, 251–284.

    Google Scholar 

  • House, R. J. (1962). An experiment in the use of management training standards. Journal of the Academy of Management, 5, 76–81.

    Google Scholar 

  • House, R. J. (1975). The quest for relevance in management education: Some second thoughts and undesired consequences. Academy of Management Journal, 18, 323–333.

    Google Scholar 

  • Howie, D. (2002). Interpreting probability: Controversies and developments in the early twentieth century. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hume, D. (1739). A treatise of human nature: Being an attempt to introduce the experimental method of reasoning into moral subjects (Vol. 1). London: Jon Noon.

    Google Scholar 

  • Huygens, C. (1657/2010). De ratiociniis in aleae ludo. or, the value of all chances in games of fortune; … mathematically demonstrated. Farmington Hills, MI: Gale ECCO.

  • Kamlah, A. (1987). The decline of the Laplacian theory of probability: A study of Stupf, von Kries, and Meinong. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 91–116). Cambridge, MA: MIT Press.

    Google Scholar 

  • Khurana, R. (2007). From hired aims to hired hands: The social transformation of American business schools and the unfulfilled promise of management as a profession. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Köhler, T., Landis, R. S., & Cortina, J. M. (2017). From the editors: Establishing methodological rigor in quantitative management learning and education research: The role of design, statistical methods, and reporting standards. Academy of Management Learning & Education, 16, 173–192.

    Google Scholar 

  • Krüger, L. (1987). The slow rise of probabilism: Philosophical arguments in the nineteenth century. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 59–89). Cambridge, MA: MIT Press.

    Google Scholar 

  • Krüger, L., Gigerenzer, G., & Morgan, M. S. (Eds.). (1987). The probabilistic revolution: Ideas in the sciences (Vol. 2). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kuhn, T. S. (2012). The structure of scientific revolutions (5th ed.). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Lagrange, J. L. (1770–1773/2009). Memoir on the utility of the method of taking the mean among the results of several observations in which one examines the advantage of this method by the calculus of probabilities, and where on selves different problems related to this material (R. J. Pulskamp, Trans.) http://cerebro.xu.edu/math/Sources/Lagrange/on%20mean.pdf.

  • Laplace, P.-S. (1774/1986). Memoir on the probability of the cause of events (S. Stigler, Trans.). Statistical Science, 1, 364–378.

  • Laplace, P.-S. (1809a/2011). Mémoire sur les approximations des formules qui sont fonctions de très-grands nombres, et sur leur application aux probabilities (R. J. Pulskamp, Trans.). http://www.cs.xu.edu/math/Sources/Laplace/approximations%20of%20formulas%201809.pdf.

  • Laplace, P.-S. (1809b/2010). Supplement au mémoire sur les approximations des formules qui sont fonctions de très-grands nombres (R. J. Pulskamp, Trans.). http://www.cs.xu.edu/math/Sources/Laplace/supplement%201809.pdf.

  • Laplace, P.-S. (1825/1995). Philosophical essay on probability (A. I. Dale, Trans.). New York: Springer.

  • Lécuyer, B.-P. (1987). Probability in vital and social statistics: Quetelet, Farr, and the Bertillons. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 317–335). Cambridge, MA: MIT Press.

    Google Scholar 

  • Leibniz, G. (1678/2004). Leibniz on estimating the uncertain: An English translation of De incerti aestimatione with commentary (W. D. C. de Leo and J. Cussens, Trans.). The Leibniz Review, 14, 31–53.

  • MacKenzie, D. (1981). Statistics in Britain, 1865-1930: The social construction of scientific knowledge. Edinburgh, UK: Edinburgh University Press.

    Google Scholar 

  • Mandelbaum, M. (1964). Philosophy, science, and sense perception. Baltimore, MD: Johns Hopkins Press.

    Google Scholar 

  • Martela, F. (2015). Fallible inquiry with ethical ends-in-view: A pragmatist philosophy of science for organizational research. Organization Studies, 36, 537–563.

    Google Scholar 

  • McFarland, D. E. (1960). The emerging revolution in management education. The Journal of the Academy of Management, 3, 7–15.

    Google Scholar 

  • McGrayne, S. (2011). The theory that would not die. New Haven, CT: Yale University Press.

    Google Scholar 

  • Melton, A. W. (1962). Editorial. Journal of Experimental Psychology, 64, 553–557.

    Google Scholar 

  • Metz, K. H. (1987). Paupers and numbers: The statistical argument for social reform in Britain during the period of industrialization. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 337–350). Cambridge, MA: MIT Press.

    Google Scholar 

  • Miner, J. B. (1963). Psychology and the business school curriculum. Academy of Management Journal, 46, 284–289.

    Google Scholar 

  • Moore, D. G. (1960). Behavioral science and business education. The Journal of the Academy of Management, 3, 187–191.

    Google Scholar 

  • Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified random sampling and the method of purposive selection (with discussion). Journal of the Royal Statistical Society, B, 97, 558–606.

    Google Scholar 

  • Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London, A, 236, 333–380.

    Google Scholar 

  • Neyman, J. (1950). First course in probability and statistics. New York: Henry Holt.

    Google Scholar 

  • Neyman, J. (1956). Note on an article by Sir Ronald Fisher. Journal of the Royal Statistical Society: Series B, 18, 288–294.

    Google Scholar 

  • Neyman, J., & Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society, A, 231, 289–337.

    Google Scholar 

  • Osler, M. J. (1970). John Locke and the changing ideal of scientific knowledge. Journal of the History of Ideas, 31, 3–16.

    Google Scholar 

  • Panter, A. T., & Sterba, S. K. (Eds.). (2011). Handbook of ethics in quantitative methodology. New York: Taylor & Francis.

    Google Scholar 

  • Pascal, B. (1653/1952). Treatise on the arithmetical triangle. In R. M. Hutchins (Ed.), Great books of the Western world: Pascal (Vol. 33, pp. 447–473). Chicago, IL: University of Chicago Press.

  • Pascal, B. (1654/1952). Correspondence with Fermat on the theory of probabilities. In R. M. Hutchins (Ed.), Great books of the Western world: Pascal (Vol. 33, pp. 474–487). Chicago, IL: University of Chicago Press.

  • Pearson, E. S. (1978). The history of statistics in the 17th & 18th centuries. London: Charles Griffin & Co.

    Google Scholar 

  • Petit, V. (2013). An object called population. In V. Petit (Ed.), Counting populations, understanding societies (pp. 53–87). Dordrecht: Springer.

    Google Scholar 

  • Pierson, F. C. (1959). The education of American businessmen: A study of university-college programmes in business administration. New York: McGraw-Hill.

    Google Scholar 

  • Poovey, M. (1995). Making a social body: British cultural formation, 1830-1864. Chicago, IL: Chicago University Press.

    Google Scholar 

  • Poovey, M. (1998). A history of the modern fact: Problems of knowledge in the sciences of wealth and society. Chicago, IL: Chicago University Press.

    Google Scholar 

  • Popper, K. (1959/2002). The logic of scientific discovery. London: Routledge.

  • Porter, T. M. (1986). The rise of statistical thinking, 1820-1900. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Porter, T. M. (1994). From Quetelet to Maxwell: Social statistics and the original of statistical physics. In I. B. Cohen (Ed.), The natural sciences and the social sciences (Vol. 150, pp. 345–362). New York: Springer.

    Google Scholar 

  • Porter, T. M. (1995). Trust in numbers: The pursuit of objectivity in science and public life. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Powell, T. (2019). Can quantitative research solve social problems? Pragmatism and the ethics of social research. Journal of Business Ethics. https://doi.org/10.1007/s10551-019-04196-7.

    Article  Google Scholar 

  • Quetelet, L. A. J. (1842/2010). A treatise on man and the development of his faculties (R. Knox, Trans., T. Smibert, Ed.). Charleston, SC: Nabu Press.

  • Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Ross, D. (1991). The origins of American social science. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Rowlinson, M., Hassard, J., & Decker, S. (2014). Research strategies for organizational history: A dialogue between historical theory and organization theory. Academy of Management Review, 39, 250–274.

    Google Scholar 

  • Rucci, A. J., & Tweney, R. D. (1980). Analysis of variance and the “second discipline” of scientific psychology: A historical account. Psychological Bulletin, 87, 166–184.

    Google Scholar 

  • Rynes, S. L., Bartunek, J. M., & Daft, R. L. (2001). Across the great divide: Knowledge creation and transfer between practitioners and academics. Academy of Management Journal, 44, 340–355.

    Google Scholar 

  • Schlossman, S., & Sedlak, M. (1985). The age of autonomy in American management education. Selections, 1, 15–26.

    Google Scholar 

  • Schlossman, S. L., Sedlak, M. W., & Wechsler, H. S. (1987). The ‘new look’: The Ford Foundation and the revolution in business education. Los Angeles, CA: Graduate Management Admissions Council.

    Google Scholar 

  • Schneider, I. (1987). Laplace and thereafter: The status of probability calculus in the nineteenth century. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 191–214). Cambridge, MA: MIT Press.

    Google Scholar 

  • Schouls, P. A. (1979). The imposition of method: A study of Descartes and Locke. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Schouls, P. A. (2000). Descartes and the possibility of science. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Schwab, A., & Starbuck, W. H. (2017). A call for openness in research reporting: How to turn covert practices into helpful tools. Academy of Management Learning & Education, 16(1), 125–141.

    Google Scholar 

  • Shapin, S. (1984). Pump and circumstance: Robert Boyle’s literary technology. Social Studies of Science, 14, 481–520.

    Google Scholar 

  • Shapin, S. (1994). A social history of truth: Civility and science in seventeenth-century England. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Shapin, S. (2008). The scientific life: A moral history of a late modern vocation. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Shapin, S. (2010). Never pure: Historical studies of science as if it was produced by people with bodies, situated in time, space, culture, and society, and struggling for credibility and authority. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Shapin, S., & Schaffer, S. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Shapiro, B. J. (1983). Probability and certainty in seventeenth-century England: A study of the relationships between natural science, religion, history, law, and literature. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Shull, F. (1962). The nature and contribution of administrative models and organizational research. The Journal of the Academy of Management, 5, 124–138.

    Google Scholar 

  • Sterling, R. D. (1959). Publication decisions and their possible effects on inferences drawn from tests of significance—Or vice versa. Journal of the American Statistical Association, 54, 30–34.

    Google Scholar 

  • Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before 1900. Cambridge, UK: Harvard University Press.

    Google Scholar 

  • Stigler, S. M. (1999). Statistics on the table: The history of statistical concepts and methods. Cambridge, UK: Harvard University Press.

    Google Scholar 

  • Strong, J. V. (1978). John Stuart Mill, John Herschel, and the ‘probability of causes’. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1, 31–41.

    Google Scholar 

  • Swijtink, Z. G. (1987). The objectification of observation: Measurement and statistical methods in the nineteenth century. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 261–292). Cambridge, MA: MIT Press.

    Google Scholar 

  • Tadajewski, M. (2009). The politics of the behavioral revolution. Organization, 16, 733–754.

    Google Scholar 

  • Towle, J. W. (1960). Opportunities ahead for the Academy of Management. The Journal of the Academy of Management, 3, 147–154.

    Google Scholar 

  • Truesdell, C. (1984). An idiot’s fugitive essays on science: Methods, criticism, training, circumstances. New York: Springer.

    Google Scholar 

  • Venn, J. (1866/2006). The logic of chance. Mineola: Dover Publications.

  • Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16, 117–186.

    Google Scholar 

  • Wald, A. (1950). Statistical decision functions. New York: Wiley.

    Google Scholar 

  • Weatherbee, T. G. (2012). Caution! This historiography makes wide turns: Historic turns and breaks in management and organization studies. Management & Organizational History, 7, 203–218.

    Google Scholar 

  • Wicks, A. C., & Freeman, R. E. (1998). Organizational studies and the new pragmatism: Positivism, anti-positivism, and the search for ethics. Organization Science, 9, 123–140.

    Google Scholar 

  • Williams, B. (2005). Descartes: The project of pure inquiry. New York: Routledge.

    Google Scholar 

  • Wise, M. N. (1987). How do sums count? One the cultural origins of statistical causality. In L. Krüger, L. J. Daston, & M. Heidelberger (Eds.), The probabilistic revolution (Vol. 1, pp. 395–425). Cambridge, MA: MIT Press.

    Google Scholar 

  • Woolf, S. (1989). Statistics and the modern state. Comparative Studies in Society and History, 31, 588–604.

    Google Scholar 

  • Yule, G. U. (1897). One the theory of correlation. Journal of the Royal Statistical Society, 60, 812–854.

    Google Scholar 

  • Yule, G. U. (1899). An investigation into the causes of changes in pauperism in England, chiefly during the last two intercensal decades, I. Journal of the Royal Statistical Society, 62, 249–295.

    Google Scholar 

  • Zabell, S. (1989). R. A. Fisher on the history of inverse probability. Statistical Science, 4, 247–263.

    Google Scholar 

  • Zabell, S. (1992). R. A. Fisher and fiducial argument. Statistical Science, 7, 369–387.

    Google Scholar 

  • Zyphur, M. J., & Pierides, D. C. (2017). Is quantitative research ethical? Tools for ethically practicing, evaluating, and using quantitative research. Journal of Business Ethics, 143, 1–16.

    Google Scholar 

  • Zyphur, M. J., & Pierides, D. C. (2019). Making quantitative research work: From positivist dogma to actual social scientific inquiry. Journal of Business Ethics. https://doi.org/10.1007/s10551-019-04189-6.

    Article  Google Scholar 

Download references

Acknowledgements

For reviewing previous versions of this manuscript the authors thank Adam Barsky, Andrew Gelman, Andrew Van de Ven, Barbara Lawrence, Fred Oswald, Graham Sewell, Karen Jehn, Kristopher Preacher, Maria Carla Galavotti, Ray Zammuto, Tom Lee, Zhen Zhang, and Dan Woodman. For help with historical insights, the authors thank James March, Steven Schlossman, William Starbuck, and the many independent presses that have made it possible to investigate the roots of our quantitative practices. We would also like to thank the anonymous reviewers who have read and responded to previous versions of this manuscript.

Funding

This research was supported by Australian Research Council’s Future Fellowship scheme (project FT140100629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Zyphur.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zyphur, M.J., Pierides, D.C. Statistics and Probability Have Always Been Value-Laden: An Historical Ontology of Quantitative Research Methods. J Bus Ethics 167, 1–18 (2020). https://doi.org/10.1007/s10551-019-04187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10551-019-04187-8

Keywords

  • Quantitative research methods
  • History
  • Research ethics
  • Historical ontology
  • Statistics and probability
  • Rigor
  • Relevance
  • Best practices
  • Questionable research practices