Skip to main content

Advertisement

Log in

Increases in BMI contribute to worsening inflammatory biomarkers related to breast cancer risk in women: a longitudinal study

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Inflammatory adipokines and cytokines play a pivotal role in linking obesity and breast cancer (BC) risk in women. We investigated the longitudinal associations between BMI change and trajectories of inflammatory biomarkers related to BC risk.

Methods

A longitudinal study was conducted among 442 Chinese women with 3-year repeated measures from 2019 to 2021. Plasma circulating inflammatory biomarkers related to BC risk, including adiponectin (ADP), resistin (RETN), soluble leptin receptor (sOB-R), insulin-like growth factor-binding protein-3 (IGFBP-3), and C-reactive protein (CRP), were examined annually. Linear mixed-effect models (LMM) were applied to investigate associations of time-varying BMI with trajectories of biomarkers. We additionally examined the modification effect of baseline BMI groups, menopausal status, and metabolic syndrome.

Results

BMI was associated with increased levels of RETN, CRP, sOB-R, and decreased levels of ADP at baseline. An increasing BMI rate was significantly associated with an average 3-year increase in RETN (β = 0.019, 95% CI 0.004 to 0.034) and sOB-R (β = 0.022, 95% CI 0.009 to 0.035), as well as a decrease in ADP (β =  − 0.006, 95% CI  − 0.012 to 0.001). These associations persisted across different baseline BMI groups. An increasing BMI rate was significantly associated with an average 3-year increase in CRP levels among normal weight (β = 0.045, 95% CI 0.001 to 0.088) and overweight (β = 0.060, 95% CI 0.014 to 0.107) women. As BMI increased over time, a more remarkable decrease in ADP was observed among women with metabolic syndrome (β =  − 0.016, 95% CI − 0.029 to − 0.004) than those without metabolic syndrome at baseline.

Conclusions

A higher increase rate of BMI was associated with poorer trajectories of inflammatory biomarkers related to BC risk. Recommendations for BMI reduction may benefit BC prevention in women, particularly for those with metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The raw data are not publicly available due to the participants’ privacy, but derived data supporting the findings are available from the corresponding author by reasonable request.

References

  1. Sung H, Siegel RL, Torre LA et al (2019) Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin 69(2):88–112. https://doi.org/10.3322/caac.21499

    Article  PubMed  Google Scholar 

  2. Pearson-Stuttard J, Zhou B, Kontis V, Bentham J, Gunter MJ, Ezzati M (2018) Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol 6(6):e6–e15. https://doi.org/10.1016/S2213-8587(18)30150-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Amadou A, Ferrari P, Muwonge R et al (2013) Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes Rev 14(8):665–678. https://doi.org/10.1111/obr.12028

    Article  CAS  PubMed  Google Scholar 

  4. World Cancer Research Fund/American Institute for Cancer Research (2018) Continuous Update Project Report 2018. Body fatness and weight gain and the risk of cancer. World Cancer Research Fund International, London. https://www.wcrf.org/wp-content/uploads/2021/01/Body-fatness-and-weight-gain_0.pdf. Accessed 1 Oct 2022

  5. Gunter MJ, Wang T, Cushman M et al (2015) Circulating adipokines and inflammatory markers and postmenopausal breast cancer risk. J Natl Cancer Inst (JNCI) 107(9):djv69. https://doi.org/10.1093/jnci/djv169

    Article  CAS  Google Scholar 

  6. Christodoulatos GS, Spyrou N, Kadillari J, Psallida S, Dalamaga M (2019) The role of adipokines in breast cancer: current evidence and perspectives. Curr Obes Rep 8(4):413–433. https://doi.org/10.1007/s13679-019-00364-y

    Article  PubMed  Google Scholar 

  7. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11(2):85–97. https://doi.org/10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6(10):772–783. https://doi.org/10.1038/nri1937

    Article  CAS  PubMed  Google Scholar 

  9. Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121):847–853. https://doi.org/10.1038/nature05483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Booth A, Magnuson A, Fouts J, Foster M (2015) Adipose tissue, obesity and adipokines: role in cancer promotion. Horm Mol Biol Clin Investig 21(1):57–74. https://doi.org/10.1515/hmbci-2014-0037

    Article  CAS  PubMed  Google Scholar 

  11. Assiri AMA, Kamel HFM (2016) Evaluation of diagnostic and predictive value of serum adipokines: leptin, resistin and visfatin in postmenopausal breast cancer. Obes Res Clin Pract 10(4):442–453. https://doi.org/10.1016/j.orcp.2015.08.017

    Article  PubMed  Google Scholar 

  12. Dalamaga M, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, Lekka A (2013) Serum resistin: a biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin Biochem 46(7–8):584–590. https://doi.org/10.1016/j.clinbiochem.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Santillán-Benítez JG, Mendieta-Zerón H, Gómez-Oliván LM et al (2013) The tetrad BMI, leptin, leptin/adiponectin (L/A) ratio and CA 15–3 are reliable biomarkers of breast cancer. J Clin Lab Anal 27(1):12–20. https://doi.org/10.1002/jcla.21555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aksoy T, Trabulus DC, Aral H, Serin E, Kelten TC (2020) Significantly lower serum adiponectin levels in the postmenopausal age may be specific for breast cancer risk. Istanb Med J 21(5):355–361. https://doi.org/10.4274/imj.galenos.2020.92979

    Article  Google Scholar 

  15. Diao S, Wu X, Zhang X et al (2021) Obesity-related proteins score as a potential marker of breast cancer risk. Sci Rep 11(1):8230. https://doi.org/10.1038/s41598-021-87583-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neuhouser Marian L, Aragaki AK, Prentice RL et al (2015) Overweight, obesity and postmenopausal invasive breast cancer risk. JAMA Oncol 1(5):611–621. https://doi.org/10.1001/jamaoncol.2015.1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byers T, Sedjo RL (2011) Does intentional weight loss reduce cancer risk? Diabetes Obes Metab 13(12):1063–1072. https://doi.org/10.1111/j.1463-1326.2011.01464.x

    Article  CAS  PubMed  Google Scholar 

  18. King B, Jiang Y, Su X et al (2013) Weight control, endocrine hormones and cancer prevention. Exp Biol Med (Maywood, NJ) 238(5):502–508. https://doi.org/10.1177/1535370213480695

    Article  CAS  Google Scholar 

  19. Foula WH, Emara RH, Eldeeb MK, Mokhtar SA, El-Sahn FA (2020) Effect of a weight loss program on serum adiponectin and insulin resistance among overweight and obese premenopausal females. J Egypt Public Health Assoc 95(1):32. https://doi.org/10.1186/s42506-020-00060-z

    Article  PubMed  PubMed Central  Google Scholar 

  20. Linkov F, Maxwell GL, Felix AS et al (2012) Longitudinal evaluation of cancer-associated biomarkers before and after weight loss in RENEW study participants: implications for cancer risk reduction. Gynecol Oncol 125(1):114–119. https://doi.org/10.1016/j.ygyno.2011.12.439

    Article  PubMed  Google Scholar 

  21. van Gemert WA, May AM, Schuit AJ, Oosterhof BYM, Peeters PH, Monninkhof EM (2016) Effect of weight loss with or without exercise on inflammatory markers and adipokines in postmenopausal women: the SHAPE-2 trial, a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 25(5):799–806. https://doi.org/10.1158/1055-9965.EPI-15-1065

    Article  CAS  PubMed  Google Scholar 

  22. Ambeba EJ, Styn MA, Kuller LH, Brooks MM, Evans RW, Burke LE (2013) Longitudinal effects of weight loss and regain on cytokine concentration of obese adults. Metabolism 62(9):1218–1222. https://doi.org/10.1016/j.metabol.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herrick JE, Panza GS, Gollie JM (2016) Leptin soluble receptor, and the free leptin index following a diet and physical activity lifestyle intervention in obese males and females. J Obes 2016:e8375828. https://doi.org/10.1155/2016/8375828

    Article  CAS  Google Scholar 

  24. Blüher M, Rudich A, Klöting N et al (2012) Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care 35(2):342–349. https://doi.org/10.2337/dc11-1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. World Health Organization (2000) The Asia-Pacific perspective: redefining obesity and its treatment. Health Communications, Sydney. https://apps.who.int/iris/bitstream/handle/10665/206936/0957708211_eng.pdf. Accessed 11 Sept 2022

  26. Grundy SM, Cleeman JI, Daniels SR et al (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112(17):2735–2752. https://doi.org/10.1161/CIRCULATIONAHA.105.169404

    Article  PubMed  Google Scholar 

  27. Karra P, Winn M, Pauleck S et al (2022) Metabolic dysfunction and obesity-related cancer: beyond obesity and metabolic syndrome. Obesity (Silver Spring) 30(7):1323–1334. https://doi.org/10.1002/oby.23444

    Article  CAS  PubMed  Google Scholar 

  28. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D (2012) Metabolic syndrome and risk of cancer. Diabetes Care 35(11):2402–2411. https://doi.org/10.2337/dc12-0336

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu X, Zhang X, Hao Y, Li J (2021) Obesity-related protein biomarkers for predicting breast cancer risk: an overview of systematic reviews. Breast Cancer (Tokyo, Jpn) 28(1):25–39. https://doi.org/10.1007/s12282-020-01182-0

    Article  CAS  Google Scholar 

  30. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115(5):911–919. https://doi.org/10.1016/j.jaci.2005.02.023

    Article  CAS  PubMed  Google Scholar 

  31. Steppan CM, Bailey ST, Bhat S et al (2001) The hormone resistin links obesity to diabetes. Nature 409(6818):307–312. https://doi.org/10.1038/35053000

    Article  CAS  PubMed  Google Scholar 

  32. Deb A, Deshmukh B, Ramteke P, Bhati FK, Bhat MK (2021) Resistin: a journey from metabolism to cancer. Transl Oncol 14(10):101178. https://doi.org/10.1016/j.tranon.2021.101178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schaab M, Kratzsch J (2015) The soluble leptin receptor. Best Pract Res Clin Endocrinol Metab 29(5):661–670. https://doi.org/10.1016/j.beem.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  34. Baxter RC (2014) IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 14(5):329–341. https://doi.org/10.1038/nrc3720

    Article  CAS  PubMed  Google Scholar 

  35. Jiang X, Shapiro DJ (2014) The immune system and inflammation in breast cancer. Mol Cell Endocrinol 382(1):673–682. https://doi.org/10.1016/j.mce.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  36. Cruz-Mejía S, Durán López HH, Navarro Meza M, Xochihua Rosas I, de la Peña S, Arroyo-Helguera OE (2018) Body mass index is associated with interleukin-1, adiponectin, oxidative stress and ioduria levels in healthy adults. Nutr Hosp 35(4):841–846. https://doi.org/10.20960/nh.1614

    Article  CAS  PubMed  Google Scholar 

  37. Cohen SS, Gammon MD, Signorello LB et al (2011) Serum adiponectin in relation to body mass index and other correlates in black and white women. Ann Epidemiol 21(2):86–94. https://doi.org/10.1016/j.annepidem.2010.10.011

    Article  PubMed  Google Scholar 

  38. Nieva-Vazquez A, Pérez-Fuentes R, Torres-Rasgado E, López-López JG, Romero JR (2014) Serum resistin levels are associated with adiposity and insulin sensitivity in obese hispanic subjects. Metab Syndr Relat Disord 12(2):143–148. https://doi.org/10.1089/met.2013.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen BH, Song Y, Ding EL et al (2009) Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts. Diabetes Care 32(2):329–334. https://doi.org/10.2337/dc08-1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gui Y, Pan Q, Chen X, Xu S, Luo X, Chen L (2017) The association between obesity related adipokines and risk of breast cancer: a meta-analysis. Oncotarget 8(43):75389–75399. https://doi.org/10.18632/oncotarget.17853

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ogier V, Ziegler O, Méjean L, Nicolas JP, Stricker-Krongrad A (2002) Obesity is associated with decreasing levels of the circulating soluble leptin receptor in humans. Int J Obes 26(4):496–503. https://doi.org/10.1038/sj.ijo.0801951

    Article  CAS  Google Scholar 

  42. Chan JL, Blüher S, Yiannakouris N, Suchard MA, Kratzsch J, Mantzoros CS (2002) Regulation of circulating soluble leptin receptor levels by gender, adiposity, sex steroids, and leptin: observational and interventional studies in humans. Diabetes 51(7):2105–2112. https://doi.org/10.2337/diabetes.51.7.2105

    Article  CAS  PubMed  Google Scholar 

  43. Black MH, Shu YH, Wu J et al (2018) Longitudinal increases in adiposity contribute to worsening adipokine profile over time in Mexican Americans. Obesity (Silver Spring, MD) 26(4):703–712. https://doi.org/10.1002/oby.22128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rolland C, Hession M, Broom I (2011) Effect of weight loss on adipokine levels in obese patients. Diabetes Metab Syndr Obes Targets Ther 4:315. https://doi.org/10.2147/DMSO.S22788

    Article  CAS  Google Scholar 

  45. Azuma K, Katsukawa F, Oguchi S et al (2003) Correlation between serum resistin level and adiposity in obese individuals. Obes Res 11(8):997–1001. https://doi.org/10.1038/oby.2003.137

    Article  CAS  PubMed  Google Scholar 

  46. Aquilante CL, Kosmiski LA, Knutsen SD, Zineh I (2008) Relationship between plasma resistin concentrations, inflammatory chemokines, and components of the metabolic syndrome in adults. Metab Clin Exp 57(4):494–501. https://doi.org/10.1016/j.metabol.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  47. Gnacińska M, Małgorzewicz S, Łysiak-Szydłowska W, Sworczak K (2010) The serum profile of adipokines in overweight patients with metabolic syndrome. Endokrynol Pol 61(1):36–41

    PubMed  Google Scholar 

  48. Yun JE, Kimm H, Jo J, Jee SH (2010) Serum leptin is associated with metabolic syndrome in obese and nonobese Korean populations. Metab Clin Exp 59(3):424–429. https://doi.org/10.1016/j.metabol.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  49. Zhao P, Xia N, Zhang H, Deng T (2020) The metabolic syndrome is a risk factor for breast cancer: a systematic review and meta-analysis. Obes Facts 13(4):384–396. https://doi.org/10.1159/000507554

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee CG, Carr MC, Murdoch SJ et al (2009) Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J Clin Endocrinol Metab 94(4):1104–1110. https://doi.org/10.1210/jc.2008-0701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chu MC, Cosper P, Orio F, Carmina E, Lobo RA (2006) Insulin resistance in postmenopausal women with metabolic syndrome and the measurements of adiponectin, leptin, resistin, and ghrelin. Am J Obstet Gynecol 194(1):100–104. https://doi.org/10.1016/j.ajog.2005.06.073

    Article  CAS  PubMed  Google Scholar 

  52. Pan XF, Wang L, Pan A (2021) Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol 9(6):373–392. https://doi.org/10.1016/S2213-8587(21)00045-0

    Article  PubMed  Google Scholar 

  53. NCD Risk Factor Collaboration (NCD-RisC) (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 387(10026):1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the participants in our longitudinal study and also acknowledge the staff of Chengdu Shuangliu Maternal and Child Health Care Hospital.

Funding

This study was supported by funds from the National Key R&D Program of China (2022YFC3600600), the Key R&D Program of Sichuan, China (2022YFS0055), the National Key R&D Program of China (2020YFC2006505), the National Natural Science Foundation of China (81874282, 81874283, 81673255), the Recruitment Program for Young Professionals of China, the Promotion Plan for Basic Medical Sciences, the Development Plan for Cutting-Edge Disciplines, Sichuan University, and other Projects from West China School of Public Health and West China Fourth Hospital, Sichuan University.

Author information

Authors and Affiliations

Authors

Contributions

YH and JL designed the study; JX and JL provided code and analytical advice; LY, PF, MZ, XL, BX, LC, and YL collected the data; BZ, XJ, ZL, CY, LL, XZ, XZ, and XW provided analytical advice and critical interpretation of findings; YH conducted all analyses and drafted the manuscript; all authors edited and approved the manuscript.

Corresponding author

Correspondence to Jiayuan Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Our study was approved by the ethics committee of West China School of Public Health and West China Fourth Hospital, Sichuan University.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Xiao, J., Fu, P. et al. Increases in BMI contribute to worsening inflammatory biomarkers related to breast cancer risk in women: a longitudinal study. Breast Cancer Res Treat 202, 117–127 (2023). https://doi.org/10.1007/s10549-023-07023-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-023-07023-w

Keywords

Navigation