Skip to main content

Advertisement

Log in

Evaluation of SNPs associated with mammographic density in European women with mammographic density in Asian women from South-East Asia

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Mammographic density (MD), after accounting for age and body mass index (BMI), is a strong heritable risk factor for breast cancer. Genome-wide association studies (GWAS) have identified 64 SNPs in 55 independent loci associated with MD in women of European ancestry. Their associations with MD in Asian women, however, are largely unknown.

Method

Using linear regression adjusting for age, BMI, and ancestry-informative principal components, we evaluated the associations of previously reported MD-associated SNPs with MD in a multi-ethnic cohort of Asian ancestry. Area and volumetric mammographic densities were determined using STRATUS (N = 2450) and Volpara™ (N = 2257). We also assessed the associations of these SNPs with breast cancer risk in an Asian population of 14,570 cases and 80,870 controls.

Results

Of the 61 SNPs available in our data, 21 were associated with MD at a nominal threshold of P value < 0.05, all in consistent directions with those reported in European ancestry populations. Of the remaining 40 variants with a P-value of association > 0.05, 29 variants showed consistent directions of association as those previously reported. We found that nine of the 21 MD-associated SNPs in this study were also associated with breast cancer risk in Asian women (P < 0.05), seven of which showed a direction of associations that was consistent with that reported for MD.

Conclusion

Our study confirms the associations of 21 SNPs (19/55 or 34.5% out of all known MD loci identified in women of European ancestry) with area and/or volumetric densities in Asian women, and further supports the evidence of a shared genetic basis through common genetic variants for MD and breast cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The BioBank Japan dataset used in this manuscript is publicly available. All other genotype and phenotype datasets used to support the findings in this manuscript are available from the corresponding author on reasonable request.

References

  1. Rajaram N, Mariapun S, Eriksson M, Tapia J, Kwan PY, Ho WK et al (2017) Differences in mammographic density between Asian and Caucasian populations: a comparative analysis. Breast Cancer Res Treat 161(2):353–362

    Article  PubMed  Google Scholar 

  2. Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR et al (2002) Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347(12):886–894

    Article  PubMed  Google Scholar 

  3. Holowko N, Eriksson M, Kuja-Halkola R, Azam S, He W, Hall P et al (2020) Heritability of mammographic breast density, density change, microcalcifications, and masses. Cancer Res 80(7):1590–1600

    Article  CAS  PubMed  Google Scholar 

  4. Evans DG, van Veen EM, Howell A, Astley S (2020) Heritability of mammographic breast density. Quant Imaging Med Surg 10(12):2387–2391

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sieh W, Rothstein JH, Klein RJ, Alexeeff SE, Sakoda LC, Jorgenson E et al (2020) Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nat Commun 11(1):5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stevens KN, Lindstrom S, Scott CG, Thompson D, Sellers TA, Wang X et al (2012) Identification of a novel percent mammographic density locus at 12q24. Hum Mol Genet 21(14):3299–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lindström S, Thompson DJ, Paterson AD, Li J, Gierach GL, Scott C et al (2014) Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk. Nat Commun 5:5303

    Article  PubMed  Google Scholar 

  8. Chen H, Fan S, Stone J, Thompson DJ, Douglas J, Li S et al (2022) Genome-wide and transcriptome-wide association studies of mammographic density phenotypes reveal novel loci. Breast Cancer Res 24(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fernandez-Navarro P, González-Neira A, Pita G, Díaz-Uriarte R, Tais Moreno L, Ederra M et al (2015) Genome wide association study identifies a novel putative mammographic density locus at 1q12-q21. Int J Cancer 136(10):2427–2436

    Article  CAS  PubMed  Google Scholar 

  10. Brand JS, Li J, Humphreys K, Karlsson R, Eriksson M, Ivansson E et al (2015) Identification of two novel mammographic density loci at 6Q25.1. Breast Cancer Res 17:75

    Article  PubMed  PubMed Central  Google Scholar 

  11. Habel LA, Lipson JA, Achacoso N, Rothstein JH, Yaffe MJ, Liang RY et al (2016) Case-control study of mammographic density and breast cancer risk using processed digital mammograms. Breast Cancer Res 18(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  12. McCormack VA, dos Santos SI (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15(6):1159–1169

    Article  Google Scholar 

  13. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236

    Article  CAS  PubMed  Google Scholar 

  14. Stone J, Thompson DJ, Dos Santos SI, Scott C, Tamimi RM, Lindstrom S et al (2015) Novel associations between common breast cancer susceptibility variants and risk-predicting mammographic density measures. Cancer Res 75(12):2457–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan MM, Ho WK, Yoon SY, Mariapun S, Hasan SN, Lee DS et al (2018) A case-control study of breast cancer risk factors in 7663 women in Malaysia. PLoS ONE 13(9):e0203469

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eriksson M, Li J, Leifland K, Czene K, Hall P (2018) A comprehensive tool for measuring mammographic density changes over time. Breast Cancer Res Treat 169(2):371–379

    Article  PubMed  PubMed Central  Google Scholar 

  17. Highnam R, Brady SM, Yaffe MJ, Karssemeijer N, Harvey J (eds) (2010) Robust breast composition measurement—Volpara IWDM’10: proceedings of the 10th international workshop on digital mammography. Springer, Berlin

  18. Ho WK, Tai MC, Dennis J, Shu X, Li J, Ho PJ et al (2022) Polygenic risk scores for prediction of breast cancer risk in Asian populations. Genet Med 24(3):586–600

    Article  CAS  PubMed  Google Scholar 

  19. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S et al (2017) Association analysis identifies 65 new breast cancer risk loci. Nature 551(7678):92–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Low SK, Chin YM, Ito H, Matsuo K, Tanikawa C, Matsuda K et al (2019) Identification of two novel breast cancer loci through large-scale genome-wide association study in the Japanese population. Sci Rep 9(1):17332

    Article  PubMed  PubMed Central  Google Scholar 

  21. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    Article  PubMed  Google Scholar 

  22. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861

    Article  CAS  PubMed  Google Scholar 

  23. Amos CI, Dennis J, Wang Z, Byun J, Schumacher FR, Gayther SA et al (2017) The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol Biomark Prev 26(1):126–135

    Article  Google Scholar 

  24. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP et al (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26(18):2336–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Machiela MJ, Chanock SJ (2015) LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31(21):3555–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho PJ, Yeoh YS, Miao H, Lim SH, Tan EY, Tan BKT et al (2021) Cohort profile: the Singapore Breast Cancer Cohort (SGBCC), a multi-center breast cancer cohort for evaluation of phenotypic risk factors and genetic markers. PLoS ONE 16(4):e0250102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagai A, Hirata M, Kamatani Y, Muto K, Matsuda K, Kiyohara Y et al (2017) Overview of the BioBank Japan Project: study design and profile. J Epidemiol 27(3S):S2–S8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shu X, Long J, Cai Q, Kweon SS, Choi JY, Kubo M et al (2020) Identification of novel breast cancer susceptibility loci in meta-analyses conducted among Asian and European descendants. Nat Commun 11(1):1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Key TJ, Appleby PN, Reeves GK, Roddam AW (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11(6):530–542

    Article  PubMed  Google Scholar 

  31. Mariapun S, Ho WK, Kang PC, Li J, Lindström S, Yip CH et al (2016) Variants in 6q251 are associated with mammographic density in Malaysian Chinese women. Cancer Epidemiol Biomark Prev 25(2):327–333

    Article  Google Scholar 

  32. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P et al (2008) Many sequence variants affecting diversity of adult human height. Nat Genet 40(5):609–615

    Article  CAS  PubMed  Google Scholar 

  33. Paternoster L, Howe LD, Tilling K, Weedon MN, Freathy RM, Frayling TM et al (2011) Adult height variants affect birth length and growth rate in children. Hum Mol Genet 20(20):4069–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang B, Shu XO, Delahanty RJ, Zeng C, Michailidou K, Bolla MK et al (2015) Height and breast cancer risk: evidence from prospective studies and Mendelian randomization. J Natl Cancer Inst 107:11

    Article  Google Scholar 

  35. Eriksson N, Benton GM, Do CB, Kiefer AK, Mountain JL, Hinds DA et al (2012) Genetic variants associated with breast size also influence breast cancer risk. BMC Med Genet 13:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan T, Zhang K, Chen W (2017) Genetic variants of ESR1 and SGSM3 are associated with the susceptibility of breast cancer in the Chinese population. Breast Cancer 24(3):369–374

    Article  PubMed  Google Scholar 

  37. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45(4):353–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brand JS, Humphreys K, Li J, Karlsson R, Hall P, Czene K (2018) Common genetic variation and novel loci associated with volumetric mammographic density. Breast Cancer Res 20(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lindström S, Vachon CM, Li J, Varghese J, Thompson D, Warren R et al (2011) Common variants in ZNF365 are associated with both mammographic density and breast cancer risk. Nat Genet 43(3):185–187

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J et al (2016) Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nat Genet 48(4):374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Astley SM, Harkness EF, Sergeant JC, Warwick J, Stavrinos P, Warren R et al (2018) A comparison of five methods of measuring mammographic density: a case-control study. Breast Cancer Res 20(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  42. Eng A, Gallant Z, Shepherd J, McCormack V, Li J, Dowsett M et al (2014) Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods. Breast Cancer Res 16(5):439

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jeffreys M, Harvey J, Highnam R, Martí J, Oliver A, Freixenet J et al (2010) Comparing a new volumetric breast density method (VolparaTM) to cumulus. In: International workshop on digital mammography. Springer, Berlin, pp 408–413

  44. Brentnall AR, Warren R, Harkness EF, Astley SM, Wiseman J, Fox J et al (2020) Mammographic density change in a cohort of premenopausal women receiving tamoxifen for breast cancer prevention over 5 years. Breast Cancer Res 22(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stone J, Dite GS, Gunasekara A, English DR, McCredie MR, Giles GG et al (2006) The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol Biomark Prev 15(4):612–617

    Article  Google Scholar 

  46. Sung J, Song YM, Stone J, Lee K, Jeong JI, Kim SS (2010) Genetic influences on mammographic density in Korean twin and family: the Healthy Twin study. Breast Cancer Res Treat 124(2):467–474

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all study participants and for their participation, and the radiologists, radiographers, support staff and research assistants of Subang Jaya Medical Centre, University Malaya Medical Centre and Cancer Research Malaysia for their contribution and support throughout the duration of this study. The Malaysian Mammographic Density Study and the Malaysian Breast Cancer Genetic Study was supported by grants from Newton-Ungku Omar Fund (Grant No: MR/P012930/1), Wellcome Trust (Grant No: v203477/Z/16/Z), Malaysian Ministry of Higher Education High Impact Research Grant (Grant No.: UM.C/HIR/ MOHE/06), and donations from the Sime Darby LPGA Tournament, Estee Lauder Group of Companies, Yayasan Sime Darby, Yayasan PETRONAS, and other donors of Cancer Research Malaysia. SGBCC is funded by NUS Start Up Grant, National University Cancer Institute Singapore (NCIS) Centre Grant (Grant No: MRC/CG/NCIS/2010, NMRC/CG/012/2013, CGAug16M005, CG21APR1005), NMRC Clinical Scientist Award (Grant No: NMRC/CSA/0048/2013), NMRC Clinician Scientist Award-Senior Investigator (Grant No: NMRC/CSA-SI/0015/2017), Asian Breast Cancer Research Fund, Breast Cancer Prevention Programme under Saw Swee Hock School of Public Health, and Breast Cancer Screening and Prevention Programme under Yong Loo Lin School of Medicine. WKH and SM are recipients of the L’Oreal-UNESCO For Women in Science National Fellowship, SM is a recipient of the Ong Hin Tiang and Ong Sek Pek Foundation Postgraduate Scholarship, and JL is the recipient of a National Research Foundation Singapore Fellowship (NRF-NRFF2017-02) and supported by the Agency for Science, Technology and Research (A*STAR). SL was supported by CA244670 from the National Institute of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design: SM, WKH and ST; Data collection: SM, NAMT, CHY, KR, JL and MH; Data analysis and interpretation: SM, WKH, ME, MCT, PH, DFE, SL and ST; Manuscript writing: SM, WKH, SL and ST; Reviewed and approved final version of manuscript: SM, WKH, ME, MCT, NAMT, CHY, KR, JL, MH, PH, DFE, SL and ST.

Corresponding author

Correspondence to Soo-Hwang Teo.

Ethics declarations

Competing interests

The Authors declare no Competing Non-Financial Interests but the following Competing Financial Interests: Mikael Eriksson and Per Hall report research grants and a patent on system and method for assessing breast cancer risk using imagery with a license to iCAD, Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 222 KB)

Supplementary file2 (DOCX 8902 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariapun, S., Ho, W.K., Eriksson, M. et al. Evaluation of SNPs associated with mammographic density in European women with mammographic density in Asian women from South-East Asia. Breast Cancer Res Treat 201, 237–245 (2023). https://doi.org/10.1007/s10549-023-06984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-023-06984-2

Keywords

Navigation