Skip to main content

Advertisement

Log in

A specific anti-cyclin D1 intrabody represses breast cancer cell proliferation by interrupting the cyclin D1–CDK4 interaction

  • Original Laboratory Investigation
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Cyclin D1 overexpression may contribute to development of various cancers, including breast cancer, and thus may serve as a key cancer diagnostic marker and therapeutic target. In our previous study, we generated a cyclin D1-specific single-chain variable fragment antibody (ADκ) from a human semi-synthetic single-chain variable fragment library. ADκ specifically interacted with recombinant and endogenous cyclin D1 proteins through an unknown molecular basis to inhibit HepG2 cell growth and proliferation.

Results

Here, using phage display and in silico protein structure modeling methods combined with cyclin D1 mutational analysis, key residues that bind to ADκ were identified. Notably, residue K112 within the cyclin box was required for cyclin D1–ADκ binding. In order to elucidate the molecular mechanism underlying ADκ anti-tumor effects, a cyclin D1-specific nuclear localization signal-containing intrabody (NLS-ADκ) was constructed. When expressed within cells, NLS-ADκ interacted specifically with cyclin D1 to significantly inhibit cell proliferation, induce G1-phase arrest, and trigger apoptosis of MCF-7 and MDA-MB-231 breast cancer cells. Moreover, the NLS–ADκ–cyclin D1 interaction blocked binding of cyclin D1 to CDK4 and inhibited RB protein phosphorylation, resulting in altered expression of downstream cell proliferation-related target genes.

Conclusion

We identified amino acid residues in cyclin D1 that may play key roles in the ADκ–cyclin D1 interaction. A nuclear localization antibody against cyclin D1 (NLS-ADκ) was constructed and successfully expressed in breast cancer cells. NLS-ADκ exerted tumor suppressor effects via blocking the binding of CDK4 to cyclin D1 and inhibiting phosphorylation of RB. The results presented here demonstrate anti-tumor potential of intrabody-based cyclin D1-targeted breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

scFv:

Single-chain variable fragment

NLS:

Nuclear localization signal

E. coli :

Escherichia coli

RB:

Retinoblastoma tumor suppressor protein

CDK4:

Cyclin-dependent kinase 4

References

  1. Matthews HK, Bertoli C, de Bruin RAM (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23(1):74–88. https://doi.org/10.1038/s41580-021-00404-3

    Article  CAS  PubMed  Google Scholar 

  2. Goel S, Bergholz J, Zhao J (2022) Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer. https://doi.org/10.1038/s41568-022-00456-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fassl A, Geng Y, Sicinski P (2022) CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375(6577):eabc1495. https://doi.org/10.1126/science.abc1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hume S, Dianov G, Ramadan K (2020) A unified model for the G1/S cell cycle transition. Nucleic Acids Res 48(22):12483–12501. https://doi.org/10.1093/nar/gkaa1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qie S, Diehl JA (2020) Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 67(Pt 2):159–170. https://doi.org/10.1016/j.semcancer.2020.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cemeli T et al (2019) Cytoplasmic cyclin D1 regulates glioblastoma dissemination. J Pathol 248(4):501–513. https://doi.org/10.1002/path.5277

    Article  CAS  PubMed  Google Scholar 

  7. Choi YJ et al (2012) The requirement for cyclin D function in tumor maintenance. Cancer Cell 22(4):438–451. https://doi.org/10.1016/j.ccr.2012.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deshpande A, Sicinski P, Hinds PW (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24(17):2909–2915. https://doi.org/10.1038/sj.onc.1208618

    Article  CAS  PubMed  Google Scholar 

  9. Musgrove EA et al (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572. https://doi.org/10.1038/nrc3090

    Article  CAS  PubMed  Google Scholar 

  10. Beroukhim R et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905. https://doi.org/10.1038/nature08822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tchakarska G, Sola B (2020) The double dealing of cyclin D1. Cell Cycle 19(2):163–178. https://doi.org/10.1080/15384101.2019.1706903

    Article  CAS  PubMed  Google Scholar 

  12. Suski JM et al (2021) Targeting cell-cycle machinery in cancer. Cancer Cell 39(6):759–778. https://doi.org/10.1016/j.ccell.2021.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marschall AL, Dübel S, Böldicke T (2015) Specific in vivo knockdown of protein function by intrabodies. MAbs 7(6):1010–35. https://doi.org/10.1080/19420862.2015.1076601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Yi J, Zhou P (2020) Development of bispecific antibodies in China: overview and prospects. Antib Ther 3(2):126–145. https://doi.org/10.1093/abt/tbaa011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin Y et al (2020) Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 25(6):1109–1120. https://doi.org/10.1016/j.drudis.2020.02.009

    Article  CAS  PubMed  Google Scholar 

  16. Cardinale A et al (2015) Intrabody-mediated diverting of HP1β to the cytoplasm induces co-aggregation of H3–H4 histones and lamin-B receptor. Exp Cell Res 338(1):70–81. https://doi.org/10.1016/j.yexcr.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  17. Cattaneo A, Chirichella M (2019) Targeting the post-translational proteome with intrabodies. Trends Biotechnol 37(6):578–591. https://doi.org/10.1016/j.tibtech.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  18. Goodwin MS et al (2021) Anti-tau scFvs targeted to the cytoplasm or secretory pathway variably modify pathology and neurodegenerative phenotypes. Mol Ther 29(2):859–872. https://doi.org/10.1016/j.ymthe.2020.10.007

    Article  CAS  PubMed  Google Scholar 

  19. Zhao L et al (2019) Intrabody against prolyl hydroxylase 2 promotes angiogenesis by stabilizing hypoxia-inducible factor-1α. Sci Rep 9(1):11861. https://doi.org/10.1038/s41598-019-47891-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao L et al (2020) Intrabody against prolyl hydroxylase 2 ameliorates acetaminophen-induced acute liver injury in mice via concomitant promotion of angiogenesis and redox homeostasis. Biomed Pharmacother 123:109783. https://doi.org/10.1016/j.biopha.2019.109783

    Article  CAS  PubMed  Google Scholar 

  21. Flego M et al (2019) Intracellular human antibody fragments recognizing the VP35 protein of Zaire ebola filovirus inhibit the protein activity. BMC Biotechnol 19(1):64. https://doi.org/10.1186/s12896-019-0554-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu Y et al (2020) A cyclin D1-specific single-chain variable fragment antibody that inhibits hepg2 cell growth and proliferation. Biotechnol J 15(8):e1900430. https://doi.org/10.1002/biot.201900430

    Article  CAS  PubMed  Google Scholar 

  23. Sun H et al (2021) Research advances in hydrogen-deuterium exchange mass spectrometry for protein epitope mapping. Anal Bioanal Chem 413(9):2345–2359. https://doi.org/10.1007/s00216-020-03091-9

    Article  CAS  PubMed  Google Scholar 

  24. Akbar R et al (2021) A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Rep 34(11):108856. https://doi.org/10.1016/j.celrep.2021.108856

    Article  CAS  PubMed  Google Scholar 

  25. Sivaccumar JP et al (2021) Development of a new highly selective monoclonal antibody against preferentially expressed antigen in melanoma (PRAME) and identification of the target epitope by bio-layer interferometry. Int J Mol Sci. https://doi.org/10.3390/ijms22063166

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu Y et al (2021) Epitopes prediction for microcystin-LR by molecular docking. Ecotoxicol Environ Saf 227:112925. https://doi.org/10.1016/j.ecoenv.2021.112925

    Article  CAS  PubMed  Google Scholar 

  27. Badaya A, Sasidhar YU (2022) The role of temperature in the binding of the disordered epitope region of human thrombopoietin to antibody: a molecular dynamics simulations study. J Mol Graph Model 111:108098. https://doi.org/10.1016/j.jmgm.2021.108098

    Article  CAS  PubMed  Google Scholar 

  28. Lee VS et al (2010) Pairwise decomposition of residue interaction energies of single chain Fv with HIV-1 p17 epitope variants. Mol Immunol 47(5):982–990. https://doi.org/10.1016/j.molimm.2009.11.021

    Article  CAS  PubMed  Google Scholar 

  29. Malik A et al (2010) Modeling the three-dimensional structures of an unbound single-chain variable fragment (scFv) and its hypothetical complex with a Corynespora cassiicola toxin, cassiicolin. J Mol Model 16(12):1883–1893. https://doi.org/10.1007/s00894-010-0680-1

    Article  CAS  PubMed  Google Scholar 

  30. Johnson JL et al (2015) Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization. Acta Crystallogr D Biol Crystallogr 71(Pt 4):896–906. https://doi.org/10.1107/s1399004715001856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Day PJ et al (2009) Crystal structure of human CDK4 in complex with a D-type cyclin. Proc Natl Acad Sci USA 106(11):4166–4170. https://doi.org/10.1073/pnas.0809645106

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yoshida A et al (2022) Non-phosphorylatable cyclin D1 mutant potentiates endometrial hyperplasia and drives carcinoma with Pten loss. Oncogene 41(15):2187–2195. https://doi.org/10.1038/s41388-022-02243-8

    Article  CAS  PubMed  Google Scholar 

  33. Fereshteh MP et al (2008) The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res 68(10):3697–3706. https://doi.org/10.1158/0008-5472.Can-07-6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robles AI et al (1998) Reduced skin tumor development in cyclin D1-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev 12(16):2469–2474. https://doi.org/10.1101/gad.12.16.2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harikumar KB et al (2010) A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 9(5):1136–1146. https://doi.org/10.1158/1535-7163.Mct-09-1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rasouli S, Zarghami N (2018) Synergistic growth inhibitory effects of chrysin and metformin combination on breast cancer cells through hTERT and Cyclin D1 suppression. Asian Pac J Cancer Prev 19(4):977–982. https://doi.org/10.22034/apjcp.2018.19.4.977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sukamporn P et al (2016) Damnacanthal and its nanoformulation exhibit anti-cancer activity via cyclin D1 down-regulation. Life Sci 152:60–66. https://doi.org/10.1016/j.lfs.2016.03.038

    Article  CAS  PubMed  Google Scholar 

  38. Ashraf Y et al (2019) Immunotherapy of triple-negative breast cancer with cathepsin D-targeting antibodies. J Immunother Cancer 7(1):29. https://doi.org/10.1186/s40425-019-0498-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Trenevska I, Li D, Banham A (2017) Therapeutic antibodies against intracellular tumor antigens. Front Immunol 8:1001. https://doi.org/10.3389/fimmu.2017.01001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biocca S et al (1995) Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Biotechnology (NY) 13(10):1110–1115. https://doi.org/10.1038/nbt1095-1110

    Article  CAS  Google Scholar 

  41. Wang Y, Wang L (2017) Vaccination with phage-displayed antigenic epitope. Methods Mol Biol 1625:225–235. https://doi.org/10.1007/978-1-4939-7104-6_15

    Article  CAS  PubMed  Google Scholar 

  42. Hess KL, Jewell CM (2020) Phage display as a tool for vaccine and immunotherapy development. Bioeng Transl Med 5(1):e10142. https://doi.org/10.1002/btm2.10142

    Article  PubMed  Google Scholar 

  43. Tan Y et al (2016) Advance in phage display technology for bioanalysis. Biotechnol J 11(6):732–745. https://doi.org/10.1002/biot.201500458

    Article  CAS  PubMed  Google Scholar 

  44. Cariccio VL et al (2016) Phage display revisited: epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology. MAbs 8(4):741–50. https://doi.org/10.1080/19420862.2016.1158371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fühner V et al (2019) Epitope mapping via phage display from single-gene libraries. Methods Mol Biol 1904:353–375. https://doi.org/10.1007/978-1-4939-8958-4_17

    Article  CAS  PubMed  Google Scholar 

  46. Moreira G, Fühner V, Hust M (2018) Epitope mapping by phage display. Methods Mol Biol 1701:497–518. https://doi.org/10.1007/978-1-4939-7447-4_28

    Article  CAS  PubMed  Google Scholar 

  47. O’Donovan B et al (2020) High-resolution epitope mapping of anti-Hu and anti-Yo autoimmunity by programmable phage display. Brain Commun 2(2):fcaa059. https://doi.org/10.1093/braincomms/fcaa059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Omidfar K, Daneshpour M (2015) Advances in phage display technology for drug discovery. Expert Opin Drug Discov 10(6):651–69. https://doi.org/10.1517/17460441.2015.1037738

    Article  CAS  PubMed  Google Scholar 

  49. Ting JP et al (2018) Utilization of peptide phage display to investigate hotspots on IL-17A and what it means for drug discovery. PLoS One 13(1):e0190850. https://doi.org/10.1371/journal.pone.0190850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Du Z, Tong X, Ye X (2013) Cyclin D1 promotes cell cycle progression through enhancing NDR1/2 kinase activity independent of cyclin-dependent kinase 4. J Biol Chem 288(37):26678–26687. https://doi.org/10.1074/jbc.M113.466433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ye Sun of the School of Life Sciences, Jilin University, Changchun, China, for his assistance and suggestion with the molecular model.

Funding

This work was supported by the Natural Science Foundation of Jilin Province, China (Grant No. 20210101003JC) and the National Natural Science Foundation of China (Grant Nos. 31570934, 31170882, 81903102).

Author information

Authors and Affiliations

Authors

Contributions

JZ and YW designed and performed all experiments and various analyses. TX, CC, and TZ performed cell experiments, data collection, and analysis. ZG and SH constructed and extracted plasmids and performed data collection and analysis. ZR and XY performed protein preparation. JZ, YW, FY, and GL designed the experiments, interpreted the data, and wrote the manuscript. GL contributed to the study conception and design, supervised the study, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fang Yang or Guiying Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1280 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wu, Y., Xiao, T. et al. A specific anti-cyclin D1 intrabody represses breast cancer cell proliferation by interrupting the cyclin D1–CDK4 interaction. Breast Cancer Res Treat 198, 555–568 (2023). https://doi.org/10.1007/s10549-023-06866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-023-06866-7

Keywords

Navigation