Skip to main content

Advertisement

Log in

Panels of circulating microRNAs as potential diagnostic biomarkers for breast cancer: a systematic review and meta-analysis

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Circulating microRNAs (miRNAs) are potential diagnostic biomarkers for breast cancer (BC). The application of miRNA panels could improve the performance of screening tests. Here, we integrated bioinformatic tools and meta-analyses to select circulating miRNAs with high diagnostic accuracy and combined these markers to develop diagnostic panels for BC.

Methods

Analyses across databases were performed to identify potential BC-related circulating miRNAs. Next, a comprehensive meta-analysis was conducted for each miRNA following the PRISMA guidelines. An electronic and manual search for relevant literature was carried out by two reviewers through PubMed, ScienceDirect, Biomed Central, and Google Scholar. The quality of the included studies was assessed using the QUADAS-2, and the statistical analyses were performed using R software 4.1.1. Finally, the accurate biomarkers confirmed through meta-analyses were combined into diagnostic models for BC.

Results

Twenty-seven circulating miRNAs were identified as BC-related by bioinformatic tools. After screening, only 10 miRNAs presented in 45 studies were eligible for meta-analyses. By assessing pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio, 8 miRNAs (miR-21, miR-30b, miR-125b, miR-145, miR221 miR-222, and miR-335) were revealed as promising BC diagnostic biomarkers. Two panels constructed from these miRNAs showed excellent diagnostic accuracy for BC, with areas under the SROC curve of 0.917 and 0.944.

Conclusion

We identified 8 potential circulating miRNAs and 2 diagnostic models that are useful for diagnosing BC. However, the established miRNA panels have not been tested in any experimental studies and thus should be validated in large case–control studies for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. World Health Organization (WHO). who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. Accessed 11 December 2020.

  2. Roganovic D, Djilas D, Vujnovic S, Pavic D, Stojanov D (2015) Breast MRI, digital mammography and breast tomosynthesis: comparison of three methods for early detection of breast cancer. Bosn J Basic Med Sci 15(4):64–68. https://doi.org/10.17305/bjbms.2015.616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Autier P, Boniol M (2018) Mammography screening: a major issue in medicine. Eur J Cancer 90:34–62. https://doi.org/10.1016/j.ejca.2017.11.002

    Article  PubMed  Google Scholar 

  4. Pace LE, Keating NL (2014) A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA 311(13):1327–1335. https://doi.org/10.1001/jama.2014.1398

    Article  CAS  PubMed  Google Scholar 

  5. Force USPST (2009) Screening for breast cancer: U.S. preventive services task force recommendation statement. Ann Intern Med 151(10):716–726. https://doi.org/10.7326/0003-4819-151-10-200911170-00008

    Article  Google Scholar 

  6. Bell RJ (2014) Screening mammography—early detection or over- diagnosis? contribution from Australian data. Climacteric 17:66–72. https://doi.org/10.3109/13697137.2014.956718

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Harbeck MC, Zhang W, Jacobson JR (2013) MicroRNA regulation of integrins. Transl Res 162:133–143. https://doi.org/10.1016/j.trsl.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  8. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A et al (2008) Mirnas accurately identify cancer tissue origin. Nat Biotechnol 26:462–469. https://doi.org/10.1038/nbt1392

    Article  CAS  PubMed  Google Scholar 

  9. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M et al (2006) A miRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. https://doi.org/10.1073/pnas.0510565103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. https://doi.org/10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  11. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T et al (2008) Distinctive miRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 105:3945–3950. https://doi.org/10.1073/pnas.0800135105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Zen K, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. https://doi.org/10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Wang X (2014) MicroRNA-21 in breast cancer: diagnostic and prognostic potential. Clin Transl Oncol 16(3):225–233. https://doi.org/10.1007/s12094-013-1132-z

    Article  CAS  PubMed  Google Scholar 

  14. Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5(10):1122–1143. https://doi.org/10.7150/thno.11543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu W, Qin W, Atasoy U, Sauter ER (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2(1):89. https://doi.org/10.1186/1756-0500-2-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Cosimo S, Appierto V, Pizzamiglio S, Tiberio P, Iorio MV, Hilbers F, de Azambuja E, de la Peña L, Izquierdo M, Huober J, Baselga J, Piccart M, de Braud FG, Apolone G, Verderio P, Daidone MG (2019) Plasma miRNA levels for predicting therapeutic response to neoadjuvant treatment in HER2-positive breast cancer: results from the NeoALTTO Trial. Clin Cancer Res 25(13):3887–3895. https://doi.org/10.1158/1078-0432.ccr-18-2507

    Article  CAS  PubMed  Google Scholar 

  17. Davey MG, Casey MC, McGuire A, Waldron RM, Paganga M, Holian E, Newell J, Heneghan HM, McDermott AM, Keane MM, Lowery AJ, Miller N, Kerin MJ (2022) Evaluating the role of circulating MicroRNAs to aid therapeutic decision making for neoadjuvant chemotherapy in breast cancer—a prospective, multicenter clinical trial. Ann Surg. https://doi.org/10.1097/sla.0000000000005613

    Article  PubMed  Google Scholar 

  18. Kleivi Sahlberg K, Bottai G, Naume B, Burwinkel B, Calin GA, Børresen-Dale AL, Santarpia L (2014) A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res 21(5):1207–1214. https://doi.org/10.1158/1078-0432.ccr-14-2011

    Article  PubMed  Google Scholar 

  19. Pérez-Rivas LG, Jerez JM, Carmona R, de Luque V, Vicioso L et al (2014) A microRNA signature associated with early recurrence in breast cancer. PLoS ONE 9(3):e91884. https://doi.org/10.1371/journal.pone.0091884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating micrornas as novel minimally invasive biomarkers for breast cancer. Ann Surg 251(3):499–505. https://doi.org/10.1097/sla.0b013e3181cc939f

    Article  PubMed  Google Scholar 

  21. Si HY, Sun XM, Chen YJ, Cao Y, Chen SM, Wang HC, Hu CJ (2013) Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol 139(2):223–229. https://doi.org/10.1007/s00432-012-1315-y

    Article  CAS  PubMed  Google Scholar 

  22. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57(1):84–91. https://doi.org/10.1373/clinchem.2010.151845

    Article  CAS  PubMed  Google Scholar 

  23. Gao J, Zhang Q, Xu J, Guo L, Li X (2013) Clinical significance of serum miR21 in breast cancer compared with CA153 and CEA. Chin J Cancer Res 25(6):743–748. https://doi.org/10.3978/j.issn.1000-9604.2013.12.04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang B, Zhang Q (2012) The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol 138(10):1659–1666. https://doi.org/10.1007/s00432-012-1244-9

    Article  CAS  PubMed  Google Scholar 

  25. Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, Arlt D, Rath M, Sohn C, Benner A, Junkermann H, Schneeweiss A, Burwinkel B (2013) Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer 132:1602–1612. https://doi.org/10.1002/ijc.27799

    Article  CAS  PubMed  Google Scholar 

  26. Han JG, Jiang YD, Zhang CH, Yang YM, Pang D, Song YN, Zhang GQ (2017) A novel panel of serum miR-21/miR-155/miR-365 as a potential diagnostic biomarker for breast cancer. Ann Surg Treat Res 92(2):55–66. https://doi.org/10.4174/astr.2017.92.2.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kodahl AR, Lyng MB, Binder H, Cold S, Gravgaard K, Knoop AS, Ditzel HJ (2014) Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol 8:874–883. https://doi.org/10.1016/j.molonc.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota-Madi A, Olender T, Golan Y, Stelzer G, Harel A, Lancet D (2010) GeneCards version 3: the human gene integrator. Database. https://doi.org/10.1093/database/baq020

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, Gershoni M, Morrey CP, Safran M, Lancet D (2017) MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res 45(D1):D877–D887. https://doi.org/10.1093/nar/gkw1012

    Article  CAS  PubMed  Google Scholar 

  30. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, QUADAS-2 Group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009

    Article  PubMed  Google Scholar 

  31. Thakur S, Grover RK, Gupta S, Yadav AK, Das BC (2016) Identification of specific miRNA signature in paired sera and tissue samples of indian women with triple negative breast cancer. PLoS ONE 11(7):e0158946. https://doi.org/10.1371/journal.pone.0158946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang SK, Luo Q, Peng H, Li J, Zhao M, Wang J, Gu YY, Li Y, Yuan P, Zhao GH, Huang CZ (2018) A panel of serum noncoding RNAs for the diagnosis and monitoring of response to therapy in patients with breast cancer. Med Sci Monit 24:2476–2488. https://doi.org/10.12659/msm.909453-

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim AM, Said MM, Hilal AM, Medhat AM, Abd Elsalam IM (2020) Candidate circulating microRNAs as potential diagnostic and predictive biomarkers for the monitoring of locally advanced breast cancer patients. Tumor Biology 42(10):101042832096381. https://doi.org/10.1177/1010428320963811

    Article  CAS  Google Scholar 

  34. Mar-Aguilar F, Mendoza-Ramírez JA, Malagón-Santiago I, Espino-Silva PK, Santuario-Facio SK, Ruiz-Flores P, Rodríguez-Padilla C, Reséndez-Pérez D (2013) Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers 34(3):163–169. https://doi.org/10.3233/DMA-120957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Torain EA, Mohammed EA, Farrag S, Ramsis N, Hosny S (2015) Pilot study of serum MicroRNA-21 as a diagnostic and prognostic biomarker in Egyptian breast cancer patients. Mol Diagn Ther 19:179–190. https://doi.org/10.1007/s40291-015-0143-6

    Article  CAS  Google Scholar 

  36. Ng EK, Li R, Shin VY, Jin HC, Leung CP, Ma ES, Pang R, Chua D, Chu KM, Law WL, Law SY, Poon RT, Kwong A (2013) Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS ONE 8:e53141. https://doi.org/10.1371/journal.pone.0053141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan T, Mao Y, Sun Q, Liu F, Lin JS, Liu Y, Cui J, Jiang Y (2018) Branched rolling circle amplification method for measuring serum circulating microRNA levels for early breast cancer detection. Cancer Sci 109(9):2897–2906. https://doi.org/10.1111/cas.13725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sadiq A, Siddique S, Khan JS, Matloob N, Qamar R, Butt AM (2020) 47P A novel serum MicroRNA-based diagnostic panel for breast cancer. Ann Oncol 31:S258. https://doi.org/10.1016/j.annonc.2020.08.199

    Article  Google Scholar 

  39. Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC, Ma R (2017) Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 619:10–20. https://doi.org/10.1016/j.gene.2017.03.038

    Article  CAS  PubMed  Google Scholar 

  40. Luo J, Zhao Q, Zhang W, Zhang Z, Gao J, Zhang C, Li Y, Tian Y (2014) A novel panel of microRNAs provides a sensitive and specific tool for the diagnosis of breast cancer. Mol Med Rep 10(2):785–791. https://doi.org/10.3892/mmr.2014.2274

    Article  CAS  PubMed  Google Scholar 

  41. Adam-Artigues A, Garrido-Cano I, Simón S, Ortega B, Moragón S, Lameirinhas A, Constâncio V, Salta S, Burgués O, Bermejo B, Henrique R, Lluch A, Jerónimo C, Eroles P, Cejalvo JM (2021) Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. ESMO open 6(1):100039. https://doi.org/10.1016/j.esmoop.2020.100039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Incoronato M, Grimaldi AM, Mirabelli P, Cavaliere C, Parente CA, Franzese M, Staibano S, Ilardi G, Russo D, Soricelli A, Catalano OA, Salvatore M (2019) Circulating miRNAs in untreated breast cancer: an exploratory multimodality morpho-functional study. Cancers 11(6):876. https://doi.org/10.3390/cancers11060876

    Article  PubMed Central  Google Scholar 

  43. Kassem NM, Makar WS, Kassem HA, Talima S, Tarek M, Hesham H, El-Desouky MA (2019) Circulating miR-34a and miR-125b as promising non invasive biomarkers in Egyptian locally advanced breast cancer patients. Asian Pac J Cancer Prev 20(9):2749–2755. https://doi.org/10.31557/APJCP.2019.20.9.2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ashirbekov Y, Abaildayev A, Omarbayeva N, Botbayev D, Belkozhayev A, Askandirova A, Neupokoyeva A, Utegenova G, Sharipov K, Aitkhozhina N (2020) Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ 8:e10494. https://doi.org/10.7717/peerj.10494

    Article  PubMed  PubMed Central  Google Scholar 

  45. Itani MM, Nassar FJ, Tfayli AH, Talhouk RS, Chamandi GK, Itani A, Makoukji J, Boustany RN, Hou L, Zgheib NK, Nasr RR (2021) A Signature of four circulating microRNAs as potential biomarkers for diagnosing early-stage breast cancer. Int J Mol Sci 22(11):6121. https://doi.org/10.3390/ijms22116121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Swellam M, Zahran RFK, Abo El-Sadat Taha H, El-Khazragy N, Abdel-Malak C (2018) Role of some circulating MiRNAs on breast cancer diagnosis. Arch Physiol Biochem 125(5):456–464. https://doi.org/10.1080/13813455.2018.1482355

    Article  CAS  PubMed  Google Scholar 

  47. Shaker O, Maher M, Nassar Y, Morcos G, Gad Z (2015) Role of microRNAs -29b-2, −155, −197 and −205 as diagnostic biomarkers in serum of breast cancer females. Gene 560(1):77–82. https://doi.org/10.1016/j.gene.2015.01.062

    Article  CAS  PubMed  Google Scholar 

  48. Zhao S, Wu Q, Gao F, Zhang C, Yang X (2012) Serum microRNA-155 as a potential biomarker for breast cancer screening. Chin Sci Bull 57(26):3466–3468. https://doi.org/10.1007/s11434-012-5362-1

    Article  CAS  Google Scholar 

  49. Hosseini Mojahed F, Aalami AH, Pouresmaeil V, Amirabadi A, Qasemi Rad M, Sahebkar A (2020) Clinical evaluation of the diagnostic role of MicroRNA-155 in breast cancer. Int J Genomics 2020:1–13. https://doi.org/10.1155/2020/9514831

    Article  CAS  Google Scholar 

  50. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15(7):673–682. https://doi.org/10.1634/theoncologist.2010-0103

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhao FL, Dou YC, Wang XF, Han DC, Lv ZG, Ge SL, Zhang YK (2014) Serum microRNA-195 is down-regulated in breast cancer: a potential marker for the diagnosis of breast cancer. Mol Biol Rep 41(9):5913–5922. https://doi.org/10.1007/s11033-014-3466-1

    Article  CAS  PubMed  Google Scholar 

  52. Peña-Cano MI, Saucedo R, Morales-Avila E, Valencia J, Zavala-Moha JÁ, López A (2019) Deregulated microRNAs and adiponectin in postmenopausal women with breast cancer. Gynecol Obstet Invest 84(4):369–377. https://doi.org/10.1159/000496340

    Article  CAS  PubMed  Google Scholar 

  53. Mishra S, Srivastava AK, Suman S, Kumar V, Shukla Y (2015) Circulating miRNAs revealed as surrogate molecular signatures for the early detection of breast cancer. Cancer Lett 369(10):67–75. https://doi.org/10.1016/j.canlet.2015.07.045

    Article  CAS  PubMed  Google Scholar 

  54. Li F (2020) Expression of miR-221 and miR-489 in breast cancer patients and their relationship with prognosis. Oncol Lett 19(2):1523–1529

    CAS  PubMed  Google Scholar 

  55. Motawi TMK, Sadik NAH, Shaker OG, El Masry MR, Mohareb F (2016) Study of microRNAs-21/221 as potential breast cancer biomarkers in Egyptian women. Gene 590(2):210–219. https://doi.org/10.1016/j.gene.2016.01.042

    Article  CAS  PubMed  Google Scholar 

  56. Wu Q, Wang C, Lu Z, Guo L, Ge Q (2012) Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta 413(13–14):1058–1065. https://doi.org/10.1016/j.cca.2012.02.016

    Article  CAS  PubMed  Google Scholar 

  57. Ali Ahmed E, Abd El-Basit SA, Mohamed MA, Swellam M (2020) Clinical role of MiRNA 29a and MiRNA 335 on breast cancer management: their relevance to MMP2 protein level. Arch Physiol Biochem 8:1–8. https://doi.org/10.1080/13813455.2020.1749085

    Article  CAS  Google Scholar 

  58. Ramadan A, Hashim M, Hassan NM, Swellam M (2020) Expression of MiR-335 and its target metalloproteinase genes: clinical significance in breast cancer. Arch Physiol Biochem 10:1–7. https://doi.org/10.1080/13813455.2019.1703004

    Article  CAS  Google Scholar 

  59. Bakhtari N, Mozdarani H, Salimi M, Omranipour R (2021) Association study of miR-22 and miR-335 expression levels and G2 assay related inherent radiosensitivity in peripheral blood of ductal carcinoma breast cancer patients. Neoplasma 68(1):190–199. https://doi.org/10.4149/neo_2020_200225N185

    Article  CAS  PubMed  Google Scholar 

  60. The Joanna Briggs Institute (2014) Joanna Briggs Institute Reviewers’ Manual: 2014 ed. ISBN: 978-1-920684-11-2. The Joanna Briggs Institute. Adelaide.

  61. Šimundić AM (2009) Measures of diagnostic accuracy: basic definitions. EJIFCC 19(4):203–211

    PubMed  PubMed Central  Google Scholar 

  62. Lee YH (2017) Overview of the process of conducting meta-analyses of the diagnostic test accuracy. J Rheum Dis 25(1):3–10. https://doi.org/10.4078/jrd.2018.25.1.3

    Article  Google Scholar 

  63. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56:1129–1135. https://doi.org/10.1016/s0895-4356(03)00177-x

    Article  PubMed  Google Scholar 

  64. Power M, Fell G, Wright M (2013) Principles for high-quality, high-value testing. BMJ Evidence-Based Medicine 18:5–10. https://doi.org/10.1136/eb-2012-100645

    Article  Google Scholar 

  65. Li F, He H (2018) Assessing the Accuracy of Diagnostic Tests. Shanghai Arch Psychiatry 30(3):207–212. https://doi.org/10.11919/j.issn.1002-0829.218052

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K (2010) The microrna spectrum in 12 body fluids. Clin Chem 56:1733–1741. https://doi.org/10.1373/clinchem.2010.147405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492. https://doi.org/10.4161/cc.7.16.6453

    Article  CAS  PubMed  Google Scholar 

  68. Wen YH, Shi X, Chiriboga L, Matsahashi S, Yee H, Afonja O (2007) Alterations in the expression of PDCD4 in ductal carcinoma of the breast. Oncol Rep 18:1387–1393. https://doi.org/10.3892/or.18.6.1387

    Article  CAS  PubMed  Google Scholar 

  69. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61. https://doi.org/10.1038/nature07086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou J, Xiang AZ, Guo JF, Cui HD (2019) miR-30b suppresses the progression of breast cancer through inhibition of the PI3K/Akt signaling pathway by targeting Derlin-1. Transl Cancer Res 8(1):180–190. https://doi.org/10.21037/tcr.2019.01.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernández-Losa J, Peg V, Fabra A, Vidal F, Kondoh H, Ramón Y, Cajal S, Lleonart ME (2013) MiR-125b Acts as a tumor suppressor in breast tumorigenesis via its novel direct targets ENPEP, CK2-α, CCNJ, and MEGF9. PLoS ONE 8(10):e76247. https://doi.org/10.1371/journal.pone.0076247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang S, Bian C, Yang Z, Bo Y, Li J, Zeng L, Zhou H, Zhao RC (2009) miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 34(5):1461–1466. https://doi.org/10.3892/ijo_00000275

    Article  CAS  PubMed  Google Scholar 

  73. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106:3207–3212. https://doi.org/10.1073/pnas.0808042106

    Article  PubMed  PubMed Central  Google Scholar 

  74. Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, Ibrahim SA, Peddibhotla S, Teng YH, Low JY, Ebnet K, Kiesel L, Yip GW (2010) miR-145-dependent targeting of junctional adhesion molecule a and MODULATION of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29:6569–6580. https://doi.org/10.1038/onc.2010.386S

    Article  PubMed  Google Scholar 

  75. Singh R, Saini N (2012) Downregulation of BCL2 by miRNAs augments drug-induced apoptosis–a combined computational and experimental approach. J Cell Sci 125:1568–1578

    CAS  PubMed  Google Scholar 

  76. Singh R, Yadav V, Kumar S, Saini N (2015) MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep 5:17454. https://doi.org/10.1242/jcs.095976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bhattacharya A, Schmitz U, Wolkenhauer O, Schönherr M, Raatz Y, Kunz M (2013) Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma. Oncogene 32:3175–3183. https://doi.org/10.1038/onc.2012.324

    Article  CAS  PubMed  Google Scholar 

  78. Lin Y, Wu J, Chen H, Mao Y, Liu Y, Mao Q, Yang K, Zheng X, Xie L (2012) Cyclin-dependent kinase 4 is a novel target in micoRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett 586:442–447. https://doi.org/10.1016/j.febslet.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  79. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafrè SA, Farace MG, Agami R (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26(15):3699–3708. https://doi.org/10.1038/sj.emboj.7601790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, Iorio MV, Li M, Volinia S, Alder H, Nakamura T, Nuovo G, Liu Y, Nephew KP, Croce CM (2010) MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 102:706–721. https://doi.org/10.1093/jnci/djq102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G, Croce CM (2009) miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16:498–509. https://doi.org/10.1016/j.ccr.2009.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gao Y, Zeng F, Wu JY, Li HY, Fan JJ, Mai L, Zhang J, Ma DM, Li Y, Song FZ (2015) MiR-335 inhibits migration of breast cancer cells through targeting oncoprotein c-Met. Tumour Biol 36(4):2875–2883. https://doi.org/10.1007/s13277-014-2917-6

    Article  CAS  PubMed  Google Scholar 

  83. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152. https://doi.org/10.1038/nature06487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by Vietnam National University, Ho Chi Minh City (VNU-HCM) under grant number 562- 2020-18-02.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

THNN: Conceptualization, methodology, formal analysis, data curation, software, writing—original draft, writing—editing, project administration, TTNN, TTML, and LHMN: Investigation, validation, review, LHH and HNP: Investigation, review, HTN: Resources, conceptualization, supervision, review, project administration, funding acquisition.

Corresponding author

Correspondence to Hue T. Nguyen.

Ethics declarations

Conflict of interest

The authors have no relevant financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 336 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H.N., Nguyen, T.T.N., Nguyen, T.T.M. et al. Panels of circulating microRNAs as potential diagnostic biomarkers for breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 196, 1–15 (2022). https://doi.org/10.1007/s10549-022-06728-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06728-8

Keywords

Navigation