Skip to main content

Invasive lobular carcinoma: an understudied emergent subtype of breast cancer

Abstract

Invasive lobular carcinoma (ILC) is the second most common histologic subtype of breast cancer after invasive ductal carcinoma (IDC), accounting for 10–15% of all breast cancer cases. Although most ILCs are of the luminal A intrinsic subtype, with favorable prognostic features, conflicting literature data are available on their outcomes compared to IDC with reports suggesting a higher risk of distant recurrence after 10 years. Historically, studies have combined ILC and IDC, with outcomes largely driven by the behavior of IDC given that it represents 90% of breast cancers. However, over the past 5 years, reports of several studies aimed at understanding ILC at the clinical, cellular, and molecular levels have been published, showing that IDC and ILC are distinct entities. In this review, we highlight the unique characteristics of ILC and describe the need for dedicated ILC clinical trials.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

There is no data available.

References

  1. Li CI et al (2003) Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA 289(11):1421–1424

    PubMed  Article  Google Scholar 

  2. Iorfida M et al (2012) Invasive lobular breast cancer: subtypes and outcome. Breast Cancer Res Treat 133(2):713–723

    CAS  PubMed  Article  Google Scholar 

  3. Barroso-Sousa R, Metzger-Filho O (2016) Differences between invasive lobular and invasive ductal carcinoma of the breast: results and therapeutic implications. Ther Adv Med Oncol 8(4):261–266

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Guiu S et al (2014) Invasive lobular breast cancer and its variants: how special are they for systemic therapy decisions? Crit Rev Oncol Hematol 92(3):235–257

    PubMed  Article  Google Scholar 

  5. Pestalozzi BC et al (2008) Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26(18):3006–3014

    PubMed  Article  Google Scholar 

  6. Ferlicot S et al (2004) Wide metastatic spreading in infiltrating lobular carcinoma of the breast. Eur J Cancer 40(3):336–341

    CAS  PubMed  Article  Google Scholar 

  7. Li CI et al (2000) Changing incidence rate of invasive lobular breast carcinoma among older women. Cancer Interdiscip Int J Am Cancer Soc 88(11):2561–2569

    CAS  Google Scholar 

  8. Desmedt C et al (2016) Genomic characterization of primary invasive lobular breast cancer. J Clin Oncol 34(16):1872–1881

    CAS  PubMed  Article  Google Scholar 

  9. Rakha EA et al (2008) Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer 44(1):73–83

    PubMed  Article  Google Scholar 

  10. Arpino G et al (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6(3):1–8

    Article  Google Scholar 

  11. Sastre-Garau X et al (1996) Infiltrating lobular carcinoma of the breast: clinicopathologic analysis of 975 cases with reference to data on conservative therapy and metastatic patterns. Cancer Interdiscip Int J Am Cancer Soc 77(1):113–120

    CAS  Google Scholar 

  12. Richard F et al (2020) Characterization of stromal tumor-infiltrating lymphocytes and genomic alterations in metastatic lobular breast cancer. Clin Cancer Res 26(23):6254–6265

    CAS  PubMed  Article  Google Scholar 

  13. Barcenas CH et al (2012) Survival outcomes in HER2-positive invasive lobular breast carcinoma. J Clin Oncol 30(15_suppl):612–612

    Article  Google Scholar 

  14. Bergeron A et al (2021) Triple-negative breast lobular carcinoma: a luminal androgen receptor carcinoma with specific ESRRA mutations. Mod Pathol 34(7):1282–1296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Taniguchi K et al (2020) Triple-negative pleomorphic lobular carcinoma and expression of androgen receptor: Personal case series and review of the literature. PLoS ONE 15(7):e0235790

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Williams LA et al (2019) Differences in race, molecular and tumor characteristics among women diagnosed with invasive ductal and lobular breast carcinomas. Cancer Causes & Control CCC 30(1):31–39

    PubMed  Article  Google Scholar 

  17. Rakha EA, Ellis IO (2010) Lobular breast carcinoma and its variants. Semin Diagn Pathol 27:49

    PubMed  Article  Google Scholar 

  18. Adams AL et al (2009) Histologic grading of invasive lobular carcinoma: does use of a 2-tiered nuclear grading system improve interobserver variability? Ann Diagn Pathol 13(4):223–225

    PubMed  Article  Google Scholar 

  19. Metzger-Filho O et al (2019) Mixed invasive ductal and lobular carcinoma of the breast: prognosis and the importance of histologic grade. Oncologist 24(7):e441–e449

    CAS  PubMed  Article  Google Scholar 

  20. Zengel B et al (2015) Comparison of the clinicopathological features of invasive ductal, invasive lobular, and mixed (invasive ductal + invasive lobular) carcinoma of the breast. Breast Cancer 22(4):374–381

    PubMed  Article  Google Scholar 

  21. Ciriello G et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Reed AEM et al (2015) Invasive lobular carcinoma of the breast: morphology, biomarkers and’omics. Breast Cancer Res 17(1):1–11

    Article  CAS  Google Scholar 

  23. Dabbs DJ et al (2013) Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol 37(7):e1–e11

    PubMed  Article  Google Scholar 

  24. Moll R et al (1993) Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am J Pathol 143(6):1731

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrogh M et al (2012) Cadherin–catenin complex dissociation in lobular neoplasia of the breast. Breast Cancer Res Treat 132(2):641–652

    CAS  PubMed  Article  Google Scholar 

  26. Schackmann RCJ et al (2011) Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. J Clin Investig 121(8):3176–3188

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Dabbs DJ, Bhargava R, Chivukula M (2007) Lobular versus ductal breast neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol 31(3):427–437

    PubMed  Article  Google Scholar 

  28. Johnson K, Sarma D, Hwang ES (2015) Lobular breast cancer series: imaging. Breast Cancer Res 17(1):1–8

    CAS  Article  Google Scholar 

  29. Lehmann U (2015) Lobular breast cancer-the most common special subtype or a most special common subtype? Springer, New York

    Book  Google Scholar 

  30. Harris M et al (1984) A comparison of the metastatic pattern of infiltrating lobular carcinoma and infiltrating duct carcinoma of the breast. Br J Cancer 50(1):23–30

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Dixon A et al (1991) A comparison of the clinical metastatic patterns of invasive lobular and ductal carcinomas of the breast. Br J Cancer 63(4):634–635

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Korhonen T et al (2013) The impact of lobular and ductal breast cancer histology on the metastatic behavior and long term survival of breast cancer patients. Breast 22(6):1119–1124

    CAS  PubMed  Article  Google Scholar 

  33. Lamovec J, Bračkko M (1991) Metastatic pattern of infiltrating lobular carcinoma of the breast: an autopsy study. J Surg Oncol 48(1):28–33

    CAS  PubMed  Article  Google Scholar 

  34. He H et al (2014) Distant metastatic disease manifestations in infiltrating lobular carcinoma of the breast. Am J Roentgenol 202(5):1140–1148

    Article  Google Scholar 

  35. Raap M et al (2015) High frequency of lobular breast cancer in distant metastases to the orbit. Cancer Med 4(1):104–111

    PubMed  Article  Google Scholar 

  36. Pramod N et al (2021) Comprehensive review of molecular mechanisms and clinical features of invasive lobular cancer. Oncologist 26(6):e943–e953

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Razavi P et al (2018) The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell 34(3):427-438. e6

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Desmedt C et al (2019) ESR1 mutations in metastatic lobular breast cancer patients. NPJ Breast Cancer 5(1):1–7

    CAS  Article  Google Scholar 

  39. Christgen M et al (2019) ERBB2 mutation frequency in lobular breast cancer with pleomorphic histology or high-risk characteristics by molecular expression profiling. Genes Chromosom Cancer 58(3):175–185

    CAS  PubMed  Article  Google Scholar 

  40. Pereira B et al (2016) The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun 7(1):1–16

    Google Scholar 

  41. Cao L et al (2019) Frequent amplifications of ESR1, ERBB2 and MDM4 in primary invasive lobular breast carcinoma. Cancer Lett 461:21–30

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Pareja F et al (2020) The genomic landscape of metastatic histologic special types of invasive breast cancer. NPJ Breast Cancer 6:53

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Nayar U et al (2019) Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor–directed therapies. Nat Genet 51(2):207–216

    CAS  PubMed  Article  Google Scholar 

  44. Kurozumi S et al (2020) Targetable ERBB2 mutation status is an independent marker of adverse prognosis in estrogen receptor positive, ERBB2 non-amplified primary lobular breast carcinoma: a retrospective in silico analysis of public datasets. Breast Cancer Res 22(1):85

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Mouabbi JA et al (2021) Management of hormone receptor-positive, human epidermal growth factor 2-negative metastatic breast cancer. Breast Cancer Res Treat 190:189

    CAS  PubMed  Article  Google Scholar 

  46. André F et al (2019) Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 380(20):1929–1940

    PubMed  Article  Google Scholar 

  47. Ben-Baruch NE et al (2015) HER2-mutated breast cancer responds to treatment with single-agent neratinib, a second-generation HER2/EGFR tyrosine kinase inhibitor. J Natl Comp Cancer Netw JNCCN 13(9):1061–1064

    CAS  Article  Google Scholar 

  48. Ekyalongo RC, Yee D (2017) Revisiting the IGF-1R as a breast cancer target. NPJ Precis Oncol 1(1):14

    PubMed  PubMed Central  Article  Google Scholar 

  49. Na B et al (2019) Therapeutic targeting of BRCA1 and TP53 mutant breast cancer through mutant p53 reactivation. NPJ Breast Cancer 5(1):14

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. Xu J et al (2019) Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat Nanotechnol 14(4):388–397

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Berns K et al (2017) Abstract 3380: synthetic lethal interaction between ARID1A mutation and BET bromodomain inhibition in ovarian clear cell carcinoma. Can Res 77(13 Supplement):3380

    Google Scholar 

  52. Klauber-DeMore N, Schulte BA, Wang GY (2018) Targeting MYC for triple-negative breast cancer treatment. Oncoscience 5(5–6):120–121

    PubMed  PubMed Central  Article  Google Scholar 

  53. Klesse LJ et al (2020) The use of MEK inhibitors in neurofibromatosis type 1–associated tumors and management of toxicities. Oncologist 25(7):e1109–e1116

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Cocco E et al (2016) Dual CCNE1/PIK3CA targeting is synergistic in CCNE1-amplified/PIK3CA-mutated uterine serous carcinomas in vitro and in vivo. Br J Cancer 115(3):303–311

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Ma CX et al (2022) The phase II MutHER study of neratinib alone and in combination with fulvestrant in HER2 mutated, non-amplified metastatic breast cancer. Clinical Cancer Research. p. clincanres.CCR-21-3418-E.2021

  56. Jhaveri KHP, Waisman J et al (2021) Neratinib + fulvestrant + trastuzumab for hormone-receptor positive, HER2-mutant metastatic breast cancer, and neratinib + trastuzumab for HER2-mutant metastatic triple-negative disease: latest updates from the SUMMIT trial. 2021. Presented at 2021 San Antonio Breast Cancer Symposium: San Antonio

  57. Ross JS et al (2013) Relapsed classic E-Cadherin (CDH1)–mutated invasive lobular breast cancer shows a high frequency of HER2 (ERBB2) gene mutations. Clin Cancer Res 19(10):2668–2676

    CAS  PubMed  Article  Google Scholar 

  58. Reed AEM et al (2021) Invasive lobular carcinoma of the breast: the increasing importance of this special subtype. Breast Cancer Res 23(1):1–16

    Article  CAS  Google Scholar 

  59. Mullen J et al (2021) Targeting ARID1A mutations in cancer. Cancer Treat Rev 100:102287

    CAS  PubMed  Article  Google Scholar 

  60. Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. AACR 2:401

    Google Scholar 

  61. Gao J et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):l1

    Article  CAS  Google Scholar 

  62. Pearson A et al (2020) Inactivating NF1 mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin Cancer Res 26(3):608–622

    CAS  PubMed  Article  Google Scholar 

  63. Dossus L, Benusiglio PR (2015) Lobular breast cancer: incidence and genetic and non-genetic risk factors. Breast Cancer Res 17(1):1–8

    CAS  Article  Google Scholar 

  64. Mavaddat N et al (2012) Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomark Prev 21(1):134–147

    CAS  Article  Google Scholar 

  65. Corso G et al (2016) CDH1 germline mutations and hereditary lobular breast cancer. Fam Cancer 15(2):215–219

    CAS  PubMed  Article  Google Scholar 

  66. Petridis C et al (2019) Frequency of pathogenic germline variants in CDH1, BRCA2, CHEK2, PALB2, BRCA1, and TP53 in sporadic lobular breast cancer. Cancer Epidemiol Prev Biomark 28(7):1162–1168

    CAS  Article  Google Scholar 

  67. Masciari S et al (2012) Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat 133(3):1125–1130

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Yadav S et al (2021) Germline pathogenic variants in cancer predisposition genes among women with invasive lobular carcinoma of the breast. J Clin Oncol 39:JCO2100640

    Article  CAS  Google Scholar 

  69. Caldas C et al (1999) Familial gastric cancer: overview and guidelines for management. J Med Genet 36(12):873–880

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Keller G et al (1999) Diffuse type gastric and lobular breast carcinoma in a familial gastric cancer patient with an E-cadherin germline mutation. Am J Pathol 155(2):337–342

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. van der Post RS et al (2015) Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet 52(6):361

    PubMed  Article  CAS  Google Scholar 

  72. Armstrong N et al (2019) A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin Epidemiol 11:543–561

    PubMed  PubMed Central  Article  Google Scholar 

  73. Consortium C.B.C.C.-C (2004) CHEK2* 1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet 74(6):1175–1182

    Article  Google Scholar 

  74. Couch FJ et al (2015) Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 33(4):304–311

    CAS  PubMed  Article  Google Scholar 

  75. Schon K, Tischkowitz M (2018) Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat 167(2):417–423

    CAS  PubMed  Article  Google Scholar 

  76. Toikkanen S, Pylkkänen L, Joensuu H (1997) Invasive lobular carcinoma of the breast has better short- and long-term survival than invasive ductal carcinoma. Br J Cancer 76(9):1234–1240

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Yang C et al (2020) Comparison of overall survival between invasive lobular breast carcinoma and invasive ductal breast carcinoma: a propensity score matching study based on SEER database. Front Oncol 10:590643

    PubMed  PubMed Central  Article  Google Scholar 

  78. García-Fernández A et al (2015) Comparative long-term study of a large series of patients with invasive ductal carcinoma and invasive lobular carcinoma. Loco-regional recurrence, metastasis, and survival. Breast J 21(5):533–537

    PubMed  Article  Google Scholar 

  79. Moran MS, Yang Q, Haffty BG (2009) The Yale University experience of early-stage invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) treated with breast conservation treatment (BCT): analysis of clinical-pathologic features, long-term outcomes, and molecular expression of COX-2, Bcl-2, and p53 as a function of histology. Breast J 15(6):571–578

    PubMed  Article  Google Scholar 

  80. Molland JG et al (2004) Infiltrating lobular carcinoma–a comparison of diagnosis, management and outcome with infiltrating duct carcinoma. Breast 13(5):389–396

    CAS  PubMed  Article  Google Scholar 

  81. Fortunato L et al (2012) Lobular breast cancer: same survival and local control compared with ductal cancer, but should both be treated the same way? Analysis of an institutional database over a 10-year period. Ann Surg Oncol 19(4):1107–1114

    PubMed  Article  Google Scholar 

  82. Lim ST et al (2014) A comparison of the clinical outcomes of patients with invasive lobular carcinoma and invasive ductal carcinoma of the breast according to molecular subtype in a Korean population. World J Surg Oncol 12(1):56

    PubMed  PubMed Central  Article  Google Scholar 

  83. Adachi Y et al (2016) Comparison of clinical outcomes between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer 16(1):248

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Chen Z et al (2017) Invasive lobular carcinoma of the breast: a special histological type compared with invasive ductal carcinoma. PLoS ONE 12(9):e0182397

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. Flores-Díaz D et al (2019) Impact of invasive lobular carcinoma on long-term outcomes in Mexican breast cancer patients. Breast Cancer Res Treat 176(1):243–249

    PubMed  Article  Google Scholar 

  86. Engstrøm MJ et al (2015) Invasive lobular breast cancer: the prognostic impact of histopathological grade E-cadherin and molecular subtypes. Histopathology 66(3):409–419

    PubMed  Article  Google Scholar 

  87. Chamalidou C et al (2021) Survival patterns of invasive lobular and invasive ductal breast cancer in a large population-based cohort with two decades of follow up. Breast 59:294–300

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Conlon N et al (2015) Is There a role for oncotype Dx testing in invasive lobular carcinoma? Breast J 21(5):514–519

    PubMed  PubMed Central  Article  Google Scholar 

  89. Felts JL et al (2017) An analysis of oncotype Dx recurrence scores and clinicopathologic characteristics in invasive lobular breast cancer. Breast J 23(6):677–686

    PubMed  Article  Google Scholar 

  90. Kelly CM et al (2010) Utility of oncotype DX risk estimates in clinically intermediate risk hormone receptor-positive, HER2-normal, grade II, lymph node-negative breast cancers. Cancer 116(22):5161–5167

    PubMed  Article  Google Scholar 

  91. Tadros AB, Wen HY, Morrow M (2018) Breast cancers of special histologic subtypes are biologically diverse. Ann Surg Oncol 25(11):3158–3164

    PubMed  PubMed Central  Article  Google Scholar 

  92. Chen XH et al (2019) 21-gene recurrence score and adjuvant chemotherapy decisions in patients with invasive lobular breast cancer. Biomark Med 13(2):83–93

    CAS  PubMed  Article  Google Scholar 

  93. Kizy S et al (2017) Impact of the 21-gene recurrence score on outcome in patients with invasive lobular carcinoma of the breast. Breast Cancer Res Treat 165(3):757–763

    PubMed  Article  Google Scholar 

  94. Makower D et al (2022) The 21-gene recurrence score in early non-ductal breast cancer: a National Cancer Database analysis. NPJ Breast Cancer 8(1):4

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Christgen M et al (2020) Differential impact of prognostic parameters in hormone receptor–positive lobular breast cancer. Cancer 126(22):4847–4858

    CAS  PubMed  Article  Google Scholar 

  96. Beumer IJ et al (2016) Prognostic value of mammaprint(®) in invasive lobular breast cancer. Biomark Insights 11:139–146

    PubMed  PubMed Central  Article  Google Scholar 

  97. Metzger O, Cardoso F, Poncet C, Desmedt C, Linn S, Wesseling J, Hilbers F, Aalders K, Delorenzi M, Delaloge S, Pierga JY, Brain E, Vrijaldenhoven S, Neijenhuis PA, Rutgers E, Piccart M, L vant-Veer, G Viale, (2020) Clinical utility of mammaprint testing in invasive lobular carcinoma: results from the MINDACT phase III trial. Eur J Cancer 138:S5–S6

    Article  Google Scholar 

  98. Jenkins JA et al (2021) The 70-gene signature test as a prognostic and predictive biomarker in patients with invasive lobular breast cancer. Breast Cancer Res Treat 191:401

    PubMed  Article  CAS  Google Scholar 

  99. Sestak I et al (2020) Prognostic value of endopredict in women with hormone receptor-positive, HER2-negative invasive lobular breast cancer. Clin Cancer Res 26(17):4682–4687

    CAS  PubMed  Article  Google Scholar 

  100. Lænkholm AV et al (2020) Population-based study of prosigna-PAM50 and outcome among postmenopausal women with estrogen receptor-positive and HER2-negative operable invasive lobular or ductal breast cancer. Clin Breast Cancer 20(4):e423–e432

    PubMed  Article  CAS  Google Scholar 

  101. McCart Reed AE et al (2019) LobSig is a multigene predictor of outcome in invasive lobular carcinoma. NPJ Breast Cancer 5(1):18

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. Luveta J et al (2020) Invasive lobular breast cancer as a distinct disease: implications for therapeutic strategy. Oncol Ther 8(1):1–11

    PubMed  Article  Google Scholar 

  103. Sledge GW, Chagpar A, Perou C (2016) Collective wisdom: lobular carcinoma of the breast. Am Soc Clin Oncol Educ Book 36:18–21

    Article  Google Scholar 

  104. Dixon JM et al (2011) Invasive lobular carcinoma: response to neoadjuvant letrozole therapy. Breast Cancer Res Treat 130(3):871–877

    CAS  PubMed  Article  Google Scholar 

  105. Thornton MJ et al (2019) Neoadjuvant endocrine therapy versus neoadjuvant chemotherapy in node-positive invasive lobular carcinoma. Ann Surg Oncol 26(10):3166–3177

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Metzger Filho O et al (2015) Relative effectiveness of letrozole compared with tamoxifen for patients with lobular carcinoma in the BIG 1–98 trial. J Clin Oncol 33(25):2772

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Knauer M et al (2015) Abstract S2–06: Survival advantage of anastrozol compared to tamoxifen for lobular breast cancer in the ABCSG-8 study. Can Res 75(9 Supplement):S2-06

    Google Scholar 

  108. Sikora MJ et al (2014) Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. Cancer Res 74(5):1463–1474

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Strasser-Weippl K et al (2018) Outcomes in women with invasive ductal or invasive lobular early stage breast cancer treated with anastrozole or exemestane in CCTG (NCIC CTG) MA.27. Eur J Cancer 90:19–25

    CAS  PubMed  Article  Google Scholar 

  110. Ariazi EA et al (2007) Exemestane’s 17-hydroxylated metabolite exerts biological effects as an androgen. Mol Cancer Ther 6(11):2817

    CAS  PubMed  Article  Google Scholar 

  111. Goss PE et al (2004) Effects of the steroidal aromatase inhibitor exemestane and the nonsteroidal aromatase inhibitor letrozole on bone and lipid metabolism in ovariectomized rats. Clin Cancer Res 10(17):5717–5723

    CAS  PubMed  Article  Google Scholar 

  112. Riva C et al (2005) Immunohistochemical study of androgen receptors in breast carcinoma. Evidence of their frequent expression in lobular carcinoma. Virchows Arch 447(4):695–700

    CAS  PubMed  Article  Google Scholar 

  113. Gao JJ et al (2020) CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis. Lancet Oncol 21(2):250–260

    CAS  PubMed  Article  Google Scholar 

  114. Orlandi A et al (2020) Poor efficacy of palbociclib in second-line treatment of metastatic lobular breast cancer in a case series: use before or never more? Breast J 26(7):1458–1460

    PubMed  Article  Google Scholar 

  115. Orlandi A et al (2020) Palbociclib plus fulvestrant or everolimus plus exemestane for pretreated advanced breast cancer with lobular histotype in ER+/HER2- patients: a propensity score-matched analysis of a multicenter retrospective patient series. J Pers Med 10(4):291

    PubMed Central  Article  Google Scholar 

  116. Baselga J et al (2011) Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N Engl J Med 366(6):520–529

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  117. Hortobagyi G et al (2014) Everolimus plus exemestane in patients with advanced invasive lobular carcinoma: efficacy and safety results from BOLERO-2. J Clin Oncol 32:152–152

    Article  Google Scholar 

  118. Desmedt C et al (2018) Immune infiltration in invasive lobular breast cancer. JNCI: J Natl Cancer Inst 110(7):768–776

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. Thompson ED et al (2017) PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. Mod Pathol 30(11):1551–1560

    CAS  PubMed  Article  Google Scholar 

  120. Michaut M et al (2016) Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer. Sci Rep 6(1):1–13

    Article  CAS  Google Scholar 

  121. Doornebal CW et al (2013) A preclinical mouse model of invasive lobular breast cancer metastasis. Cancer Res 73(1):353–363

    CAS  PubMed  Article  Google Scholar 

  122. Du T et al (2018) Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism. Sci Rep 8(1):7205

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. Dirix LY et al (2018) Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 167(3):671–686

    CAS  PubMed  Article  Google Scholar 

  124. Rugo HS et al (2018) Safety and antitumor activity of pembrolizumab in patients with estrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer. Clin Cancer Res 24(12):2804

    CAS  PubMed  Article  Google Scholar 

  125. Voorwerk L et al (2021) LBA3 Atezolizumab with carboplatin as immune induction in metastatic lobular breast cancer: first results of the GELATO-trial. Ann Oncol 32:S58

    Article  Google Scholar 

  126. Chaturvedi S, Heys SD, Chaturvedi RS et al (2004) Primary chemotherapy for breast cancers: does histological type of cancer matter? Breast Cancer Res Treat 88:S106

    Google Scholar 

  127. Cocquyt VF et al (2003) Different responses to preoperative chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur J Surg Oncol 29(4):361–367

    CAS  PubMed  Article  Google Scholar 

  128. Cristofanilli M et al (2005) Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J Clin Oncol 23(1):41–48

    PubMed  Article  Google Scholar 

  129. Delpech Y et al (2013) Clinical benefit from neoadjuvant chemotherapy in oestrogen receptor-positive invasive ductal and lobular carcinomas. Br J Cancer 108(2):285–291

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Lips EH et al (2012) Lobular histology and response to neoadjuvant chemotherapy in invasive breast cancer. Breast Cancer Res Treat 136(1):35–43

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Loibl S et al (2014) Response and prognosis after neoadjuvant chemotherapy in 1,051 patients with infiltrating lobular breast carcinoma. Breast Cancer Res Treat 144(1):153–162

    CAS  PubMed  Article  Google Scholar 

  132. Petrelli F, Barni S (2013) Response to neoadjuvant chemotherapy in ductal compared to lobular carcinoma of the breast: a meta-analysis of published trials including 1,764 lobular breast cancer. Breast Cancer Res Treat 142(2):227–235

    CAS  PubMed  Article  Google Scholar 

  133. Pu RT et al (2005) Pathologic features of breast cancer associated with complete response to neoadjuvant chemotherapy: importance of tumor necrosis. Am J Surg Pathol 29(3):354–358

    PubMed  Article  Google Scholar 

  134. Truin W et al (2016) Differences in response and surgical management with neoadjuvant chemotherapy in invasive lobular versus ductal breast cancer. Ann Surg Oncol 23(1):51–57

    CAS  PubMed  Article  Google Scholar 

  135. Tubiana-Hulin M et al (2006) Response to neoadjuvant chemotherapy in lobular and ductal breast carcinomas: a retrospective study on 860 patients from one institution. Ann Oncol 17(8):1228–1233

    CAS  PubMed  Article  Google Scholar 

  136. Wenzel C et al (2007) Invasive ductal carcinoma and invasive lobular carcinoma of breast differ in response following neoadjuvant therapy with epidoxorubicin and docetaxel + G-CSF. Breast Cancer Res Treat 104(1):109–114

    PubMed  Article  Google Scholar 

  137. Mathieu MC et al (2004) The poor responsiveness of infiltrating lobular breast carcinomas to neoadjuvant chemotherapy can be explained by their biological profile. Eur J Cancer 40(3):342–351

    PubMed  Article  Google Scholar 

  138. Rastogi P et al (2008) Preoperative chemotherapy: updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol 26(5):778–785

    PubMed  Article  Google Scholar 

  139. Tamirisa N et al (2019) The impact of chemotherapy sequence on survival in node-positive invasive lobular carcinoma. J Surg Oncol 120(2):132–141

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Truin W et al (2012) Effect of adjuvant chemotherapy in postmenopausal patients with invasive ductal versus lobular breast cancer. Ann Oncol 23(11):2859–2865

    CAS  PubMed  Article  Google Scholar 

  141. Marmor S et al (2017) Relative effectiveness of adjuvant chemotherapy for invasive lobular compared with invasive ductal carcinoma of the breast. Cancer 123(16):3015–3021

    CAS  PubMed  Article  Google Scholar 

  142. Pérez-Garcia J, Cortés J, Metzger Filho O (2019) Efficacy of single-agent chemotherapy for patients with advanced invasive lobular carcinoma: a pooled analysis from three clinical trials. Oncologist 24(8):1041–1047

    PubMed  Article  CAS  Google Scholar 

  143. Yu J et al (2011) Classical-type invasive lobular carcinoma with HER2 overexpression: clinical, histologic, and hormone receptor characteristics. Am J Clin Pathol 136(1):88–97

    CAS  PubMed  Article  Google Scholar 

  144. Altundag K (2019) HER2+ and triple-negative phenotypes in invasive lobular carcinoma might have different specific biological features. Breast Cancer Res Treat 176(3):719–719

    PubMed  Article  Google Scholar 

  145. Huang X et al (2021) Clinicopathological features of and neoadjuvant therapy for human epidermal growth factor receptor 2-positive classic invasive lobular carcinoma. Hum Pathol 117:51–59

    CAS  PubMed  Article  Google Scholar 

  146. Zhang H et al (2020) Frequency, clinicopathologic characteristics, and follow-up of HER2-positive nonpleomorphic invasive lobular carcinoma of the breast. Am J Clin Pathol 153(5):583–592

    CAS  PubMed  Article  Google Scholar 

  147. Da Ros L et al (2018) HER2-positive lobular versus ductal carcinoma of the breast: pattern of first recurrence and molecular insights. Clin Breast Cancer 18(5):e1133–e1139

    PubMed  Article  Google Scholar 

  148. Metzger-Filho O et al (2013) Magnitude of trastuzumab benefit in patients with HER2-positive, invasive lobular breast carcinoma: results from the HERA trial. J Clin Oncol 31(16):1954–1960

    CAS  PubMed  Article  Google Scholar 

  149. Chumsri S et al (2021) Outcome and immune landscape of HER2-positive invasive lobular carcinoma in the North Central Cancer Treatment Group (NCCTG) N9831 (Alliance) trial. J Clin Oncol 39(15_suppl):535–535

    Article  Google Scholar 

  150. Bajrami I et al (2018) E-cadherin/ROS1 inhibitor synthetic lethality in breast cancer. Cancer Discov 8(4):498–515

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors received no funding or financial support for the authorship or publication of this article. This article has been reviewed and proofread by the Editing Services, Research Medical Library at the University of Texas MD Anderson Cancer Center.

Funding

There was no funding.

Author information

Authors and Affiliations

Authors

Contributions

JAM conceived the project, developed the outline, content and performed the literature review. AH, BL, GNH, DT and RML contributed to all outline/content/suggestions of literature, participated in revisions of initial/subsequent drafts, and approval of final version to be published.

Corresponding author

Correspondence to Jason A. Mouabbi.

Ethics declarations

Conflict of interest

Jason A. Mouabbi: Consulting fees from GE Healthcare, Cardinal Health and Genentech. Any Hassan: Consulting fees for AIM Specialty Health, Oncology Pathways Program. Bora Lim: Consultation fees from Pfizer, Novartis, AstraZeneca and Prime Oncology Program. Research support from Puma Biotechnology, Merck, Genentech. Gabriel N. Hortobagyi: Research support from Novartis. Consulting fees from Novartis. Debasish Tripathy: Research support from Novartis and Pfizer. Consulting fees from Novartis, Pfizer, Exact Sciences, Gilead, GlaxoSmithKline and AstraZeneca. Rachel M. Layman: Research support from Pfizer, Eli Lilly, Novartis, GlaxoSmithKline, Puma, Zentalis and Celcuity. Consulting fees from Pfizer, Eli Lilly, Novartis and Celcuity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mouabbi, J.A., Hassan, A., Lim, B. et al. Invasive lobular carcinoma: an understudied emergent subtype of breast cancer. Breast Cancer Res Treat 193, 253–264 (2022). https://doi.org/10.1007/s10549-022-06572-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06572-w

Keywords

  • Invasive lobular carcinoma
  • ILC
  • Review article
  • Estrogen receptor positive
  • ER+
  • HR+
  • Endocrine therapy
  • CDH1