Skip to main content

Advertisement

Log in

Emerging strategies for TNBC with early clinical data: new chemoimmunotherapy strategies

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The use of immune checkpoint inhibitors in combination with chemotherapy for the treatment of triple-negative breast cancer is becoming more widespread as efficacy data accumulates. However, outcomes remain less than optimal and not all patients benefit from treatment. The aim of this article is to review the emerging chemoimmunotherapy strategies for triple-negative breast cancer.

Methods

Searches were undertaken on Pubmed and Clinicaltrials.gov for relevant publications and trials.

Results

Preclinical and clinical data have provided insights into the differing immunomodulatory effects of chemotherapy agents, highlighting the immunostimulatory properties of anthracyclines. Mechanisms of resistance to immune checkpoint inhibition are discussed and the potential role of phosphatidylinositol 3-kinase (PI3K)/AKT and MAPK/ERK kinase (MEK) inhibitors in overcoming resistance. Finally, the emerging therapeutic class of antibody–drug conjugates for triple-negative breast cancer in combination with immune checkpoint inhibitors is reviewed.

Conclusions

The type and sequence of chemotherapy agents play an important role in optimising the response to immune checkpoint inhibitors. Antibody–drug conjugates in combination with immune checkpoint inhibitors are a promising area of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ADC:

Antibody–drug conjugate

CI:

Confidence interval

CSF-1R:

Colony stimulating factor-1 receptor

DC:

Dendritic cell

DFI:

Disease free interval

DFS:

Disease free survival

FDA:

Food and Drug Administration

HR:

Hazard ratio

ICI:

Immune checkpoint inhibitor

IFNγ:

Interferon γ

ITT:

Intention to treat

MAPK:

Mitogen activated protein kinase

MDSC:

Myeloid-derived suppressor cells

MEK:

MAPK/ERK kinase

MHC:

Major histocompatibility complex

NK:

Natural killer cell

ORR:

Objective response rate

OR:

Odds ratio

OS:

Overall survival

PARP:

Poly-ADP ribose polymerase

pCR:

Pathological complete response

PD-1:

Programmed death 1

PD-L1:

Programmed death ligand 1

PFS:

Progression free survival

PI3K:

Phosphatidylinositol 3-kinase

TAM:

Tumour associated macrophage

TIL:

Tumour infiltrating lymphocyte

TGFβ:

Transforming growth factor β

TMB:

Tumour mutational burden

TME:

Tumour microenvironment

TNBC:

Triple-negative breast cancer

VEGF:

Vascular endothelial growth factor

References

  1. Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA, Fitzgibbons PL, Hayes DF, Lakhani SR, Chavez-MacGregor M, Perlmutter J, Perou CM, Regan MM, Rimm DL, Symmans WF, Torlakovic EE, Varella L, Viale G, Weisberg TF, McShane LM, Wolff AC (2020) Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J Clin Oncol 38:1346–1366. https://doi.org/10.1200/jco.19.02309

    Article  PubMed  Google Scholar 

  2. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, Jenkins RB, Press MF, Spears PA, Vance GH, Viale G, McShane LM, Dowsett M (2018) Human epidermal growth factor receptor 2 testing in breast cancer: american society of clinical oncology/college of american pathologists clinical practice guideline focused update. J Clin Oncol 36:2105–2122. https://doi.org/10.1200/jco.2018.77.8738

    Article  CAS  PubMed  Google Scholar 

  3. Boyle P (2012) Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol 23(Suppl 6):iv7-12. https://doi.org/10.1093/annonc/mds187

    Article  Google Scholar 

  4. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277. https://doi.org/10.1200/jco.2009.25.9820

    Article  PubMed  Google Scholar 

  5. Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, O’Regan R, Torres MA, Meisel JL (2017) Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat 161:279–287. https://doi.org/10.1007/s10549-016-4059-6

    Article  PubMed  Google Scholar 

  6. Metzger-Filho O, Sun Z, Viale G, Price KN, Crivellari D, Snyder RD, Gelber RD, Castiglione-Gertsch M, Coates AS, Goldhirsch A, Cardoso F (2013) Patterns of recurrence and outcome according to breast cancer subtypes in lymph node-negative disease: results from international breast cancer study group trials VIII and IX. J Clin Oncol 31:3083–3090. https://doi.org/10.1200/jco.2012.46.1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E (2019) Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 30:1194–1220. https://doi.org/10.1093/annonc/mdz173

    Article  CAS  PubMed  Google Scholar 

  8. Masuda N, Lee SJ, Ohtani S, Im YH, Lee ES, Yokota I, Kuroi K, Im SA, Park BW, Kim SB, Yanagita Y, Ohno S, Takao S, Aogi K, Iwata H, Jeong J, Kim A, Park KH, Sasano H, Ohashi Y, Toi M (2017) Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med 376:2147–2159. https://doi.org/10.1056/NEJMoa1612645

    Article  CAS  PubMed  Google Scholar 

  9. NCCN (2020) NCCN guidelines breast cancer

  10. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE Jr, Pazdur R, Ditsch N, Rastogi P, Eiermann W, von Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172. https://doi.org/10.1016/s0140-6736(13)62422-8

    Article  PubMed  Google Scholar 

  11. Huang M, O’Shaughnessy J, Zhao J, Haiderali A, Cortés J, Ramsey SD, Briggs A, Hu P, Karantza V, Aktan G, Qi CZ, Gu C, Xie J, Yuan M, Cook J, Untch M, Schmid P, Fasching PA (2020) Association of pathologic complete response with long-term survival outcomes in triple-negative breast cancer: a meta-analysis. Cancer Res 80:5427–5434. https://doi.org/10.1158/0008-5472.Can-20-1792

    Article  CAS  PubMed  Google Scholar 

  12. FDA (2018) Clinical trial endpoints for the approval of cancer drugs and biologics guidance for industry.

  13. Loibl S, O’Shaughnessy J, Untch M, Sikov WM, Rugo HS, McKee MD, Huober J, Golshan M, von Minckwitz G, Maag D, Sullivan D, Wolmark N, McIntyre K, Ponce Lorenzo JJ, Metzger Filho O, Rastogi P, Symmans WF, Liu X, Geyer CE Jr (2018) Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 19:497–509. https://doi.org/10.1016/s1470-2045(18)30111-6

    Article  CAS  PubMed  Google Scholar 

  14. von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S, Gerber B, Zahm DM, Kümmel S, Eidtmann H, Klare P, Huober J, Costa S, Tesch H, Hanusch C, Hilfrich J, Khandan F, Fasching PA, Sinn BV, Engels K, Mehta K, Nekljudova V, Untch M (2014) Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 15:747–756. https://doi.org/10.1016/s1470-2045(14)70160-3

    Article  Google Scholar 

  15. Wang D, Feng J, Xu B (2019) A meta-analysis of platinum-based neoadjuvant chemotherapy versus standard neoadjuvant chemotherapy for triple-negative breast cancer. Future Oncol (London, England) 15:2779–2790. https://doi.org/10.2217/fon-2019-0165

    Article  CAS  Google Scholar 

  16. Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, Harbeck N, Aguilar Lopez B, Barrios CH, Bergh J, Biganzoli L, Boers-Doets CB, Cardoso MJ, Carey LA, Cortés J, Curigliano G, Diéras V, El Saghir NS, Eniu A, Fallowfield L, Francis PA, Gelmon K, Johnston SRD, Kaufman B, Koppikar S, Krop IE, Mayer M, Nakigudde G, Offersen BV, Ohno S, Pagani O, Paluch-Shimon S, Penault-Llorca F, Prat A, Rugo HS, Sledge GW, Spence D, Thomssen C, Vorobiof DA, Xu B, Norton L, Winer EP (2018) 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)†. Ann Oncol 29:1634–1657. https://doi.org/10.1093/annonc/mdy192

    Article  CAS  PubMed  Google Scholar 

  17. Katsumata N, Watanabe T, Minami H, Aogi K, Tabei T, Sano M, Masuda N, Andoh J, Ikeda T, Shibata T, Takashima S (2009) Phase III trial of doxorubicin plus cyclophosphamide (AC), docetaxel, and alternating AC and docetaxel as front-line chemotherapy for metastatic breast cancer: Japan Clinical Oncology Group trial (JCOG9802). Ann Oncol 20:1210–1215. https://doi.org/10.1093/annonc/mdn781

    Article  CAS  PubMed  Google Scholar 

  18. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  19. Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, Owen J, Abraham J, Barrett S, Barrett-Lee P, Brown R, Chan S, Dowsett M, Flanagan JM, Fox L, Grigoriadis A, Gutin A, Harper-Wynne C, Hatton MQ, Hoadley KA, Parikh J, Parker P, Perou CM, Roylance R, Shah V, Shaw A, Smith IE, Timms KM, Wardley AM, Wilson G, Gillett C, Lanchbury JS, Ashworth A, Rahman N, Harries M, Ellis P, Pinder SE, Bliss JM (2018) Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 24:628–637. https://doi.org/10.1038/s41591-018-0009-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pivot X, Marmé F, Koenigsberg R, Guo M, Berrak E, Wolfer A (2016) Pooled analyses of eribulin in metastatic breast cancer patients with at least one prior chemotherapy. Ann Oncol 27:1525–1531. https://doi.org/10.1093/annonc/mdw203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barroso-Sousa R, Jain E, Cohen O, Kim D, Buendia-Buendia J, Winer E, Lin N, Tolaney SM, Wagle N (2020) Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol 31:387–394. https://doi.org/10.1016/j.annonc.2019.11.010

    Article  CAS  PubMed  Google Scholar 

  22. Colli LM, Machiela MJ, Myers TA, Jessop L, Yu K, Chanock SJ (2016) Burden of nonsynonymous mutations among TCGA cancers and candidate immune checkpoint inhibitor responses. Cancer Res 76:3767–3772. https://doi.org/10.1158/0008-5472.Can-16-0170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, Schmitt WD, Blohmer JU, Karn T, Pfitzner BM, Kümmel S, Engels K, Schneeweiss A, Hartmann A, Noske A, Fasching PA, Jackisch C, van Mackelenbergh M, Sinn P, Schem C, Hanusch C, Untch M, Loibl S (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19:40–50. https://doi.org/10.1016/s1470-2045(17)30904-x

    Article  PubMed  Google Scholar 

  24. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387:1837–1846. https://doi.org/10.1016/s0140-6736(16)00587-0

    Article  CAS  PubMed  Google Scholar 

  25. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, Chawla A, Curran M, Hwu P, Sharma P, Litton JK, Molldrem JJ, Alatrash G (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2:361–370. https://doi.org/10.1158/2326-6066.Cir-13-0127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Adams S, Loi S, Toppmeyer D, Cescon DW, De Laurentiis M, Nanda R, Winer EP, Mukai H, Tamura K, Armstrong A, Liu MC, Iwata H, Ryvo L, Wimberger P, Rugo HS, Tan AR, Jia L, Ding Y, Karantza V, Schmid P (2019) Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol 30:405–411. https://doi.org/10.1093/annonc/mdy518

    Article  CAS  PubMed  Google Scholar 

  28. Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R, Hui R, Curigliano G, Toppmeyer D, O’Shaughnessy J, Loi S, Paluch-Shimon S, Tan AR, Card D, Zhao J, Karantza V, Cortés J (2019) Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol 30:397–404. https://doi.org/10.1093/annonc/mdy517

    Article  CAS  PubMed  Google Scholar 

  29. Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, Kuter I, Nanda R, Cassier PA, Delord JP, Gordon MS, ElGabry E, Chang CW, Sarkar I, Grossman W, O’Hear C, Fassò M, Molinero L, Schmid P (2019) Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol 5:74–82. https://doi.org/10.1001/jamaoncol.2018.4224

    Article  PubMed  Google Scholar 

  30. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im S-A, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Holgado E, Iwata H, Masuda N, Otero MT, Gokmen E, Loi S, Guo Z, Zhao J, Aktan G, Karantza V, Schmid P (2020) KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer. J Clin Oncol 38:1000–1000. https://doi.org/10.1200/JCO.2020.38.15_suppl.1000

    Article  Google Scholar 

  31. Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, Koehler A, Sohn J, Iwata H, Telli ML, Ferrario C, Punie K, Penault-Llorca F, Patel S, Duc AN, Liste-Hermoso M, Maiya V, Molinero L, Chui SY, Harbeck N (2020) Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet 396:1090–1100. https://doi.org/10.1016/s0140-6736(20)31953-x

    Article  CAS  PubMed  Google Scholar 

  32. Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, Denkert C, Park YH, Hui R, Harbeck N, Takahashi M, Foukakis T, Fasching PA, Cardoso F, Untch M, Jia L, Karantza V, Zhao J, Aktan G, Dent R, O’Shaughnessy J (2020) Pembrolizumab for early triple-negative breast cancer. N Engl J Med 382:810–821. https://doi.org/10.1056/NEJMoa1910549

    Article  CAS  PubMed  Google Scholar 

  33. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714. https://doi.org/10.1016/j.ccell.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  34. Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B, Katsanis E, Larmonier N (2014) Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74:104–118. https://doi.org/10.1158/0008-5472.Can-13-1545

    Article  CAS  PubMed  Google Scholar 

  35. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Métivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701. https://doi.org/10.1084/jem.20050915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C, Fend L, Hannani D, Aymeric L, Ma Y, Niso-Santano M, Kepp O, Schultze JL, Tüting T, Belardelli F, Bracci L, La Sorsa V, Ziccheddu G, Sestili P, Urbani F, Delorenzi M, Lacroix-Triki M, Quidville V, Conforti R, Spano JP, Pusztai L, Poirier-Colame V, Delaloge S, Penault-Llorca F, Ladoire S, Arnould L, Cyrta J, Dessoliers MC, Eggermont A, Bianchi ME, Pittet M, Engblom C, Pfirschke C, Préville X, Uzè G, Schreiber RD, Chow MT, Smyth MJ, Proietti E, André F, Kroemer G, Zitvogel L (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20:1301–1309. https://doi.org/10.1038/nm.3708

    Article  CAS  PubMed  Google Scholar 

  37. Liechtenstein T, Perez-Janices N, Gato M, Caliendo F, Kochan G, Blanco-Luquin I, Van der Jeught K, Arce F, Guerrero-Setas D, Fernandez-Irigoyen J, Santamaria E, Breckpot K, Escors D (2014) A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget 5:7843–7857. https://doi.org/10.18632/oncotarget.2279

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, Shurin GV, Shurin MR, Umansky V (2013) Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol 190:2464–2471. https://doi.org/10.4049/jimmunol.1202781

    Article  CAS  PubMed  Google Scholar 

  39. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer immunology, immunotherapy : CII 56:641–648. https://doi.org/10.1007/s00262-006-0225-8

    Article  CAS  PubMed  Google Scholar 

  40. Scurr M, Pembroke T, Bloom A, Roberts D, Thomson A, Smart K, Bridgeman H, Adams R, Brewster A, Jones R, Gwynne S, Blount D, Harrop R, Hills R, Gallimore A, Godkin A (2017) Low-dose cyclophosphamide induces antitumor T-cell responses, which associate with survival in metastatic colorectal cancer. Clin Cancer Res 23:6771–6780. https://doi.org/10.1158/1078-0432.Ccr-17-0895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lesterhuis WJ, Punt CJ, Hato SV, Eleveld-Trancikova D, Jansen BJ, Nierkens S, Schreibelt G, de Boer A, Van Herpen CM, Kaanders JH, van Krieken JH, Adema GJ, Figdor CG, de Vries IJ (2011) Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J Clin Investig 121:3100–3108. https://doi.org/10.1172/jci43656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wan S, Pestka S, Jubin RG, Lyu YL, Tsai YC, Liu LF (2012) Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells. PLoS ONE 7:e32542. https://doi.org/10.1371/journal.pone.0032542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Senbabaoglu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Hoglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548. https://doi.org/10.1038/nature25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueda S, Saeki T, Takeuchi H, Shigekawa T, Yamane T, Kuji I, Osaki A (2016) In vivo imaging of eribulin-induced reoxygenation in advanced breast cancer patients: a comparison to bevacizumab. Br J Cancer 114:1212–1218. https://doi.org/10.1038/bjc.2016.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, Nederlof I, Kluin RJC, Warren S, Ong S, Wiersma TG, Russell NS, Lalezari F, Schouten PC, Bakker NAM, Ketelaars SLC, Peters D, Lange CAH, van Werkhoven E, van Tinteren H, Mandjes IAM, Kemper I, Onderwater S, Chalabi M, Wilgenhof S, Haanen J, Salgado R, de Visser KE, Sonke GS, Wessels LFA, Linn SC, Schumacher TN, Blank CU, Kok M (2019) Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med 25:920–928. https://doi.org/10.1038/s41591-019-0432-4

    Article  CAS  PubMed  Google Scholar 

  46. Nanda R, Liu MC, Yau C, Shatsky R, Pusztai L, Wallace A, Chien AJ, Forero-Torres A, Ellis E, Han H, Clark A, Albain K, Boughey JC, Jaskowiak NT, Elias A, Isaacs C, Kemmer K, Helsten T, Majure M, Stringer-Reasor E, Parker C, Lee MC, Haddad T, Cohen RN, Asare S, Wilson A, Hirst GL, Singhrao R, Steeg K, Asare A, Matthews JB, Berry S, Sanil A, Schwab R, Symmans WF, van’t Veer L, Yee D, DeMichele A, Hylton NM, Melisko M, Perlmutter J, Rugo J, Berry HS, Esserman DA (2020) Effect of Pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol 6:1–9. https://doi.org/10.1001/jamaoncol.2019.6650

    Article  PubMed Central  Google Scholar 

  47. Gianni L, Huang C-S, Egle D, Bermejo B, Zamagni C, Thill M, Anton A, Zambelli S, Bianchini G, Russo S, Ciruelos E, Greil R, Semiglazov V, Colleoni M, Kelly C, Mariani G, Mastro LD, Maffeis I, Valagussa P, Viale G (2020) Abstract GS3–04: Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple negative, early high-risk and locally advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study. Cancer Res. https://doi.org/10.1158/1538-7445.Sabcs19-gs3-04

    Article  Google Scholar 

  48. Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, Grischke EM, Furlanetto J, Tesch H, Hanusch C, Engels K, Rezai M, Jackisch C, Schmitt WD, von Minckwitz G, Thomalla J, Kümmel S, Rautenberg B, Fasching PA, Weber K, Rhiem K, Denkert C, Schneeweiss A (2019) A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol 30:1279–1288. https://doi.org/10.1093/annonc/mdz158

    Article  CAS  PubMed  Google Scholar 

  49. Loibl S, Schneeweiss A, Huober JB, Braun M, Rey J, Blohmer JU, Furlanetto J, Zahm DM, Hanusch C, Thomalla J, Jackisch C, Staib P, Link T, Rhiem K, Solbach C, Fasching PA, Burchardi N, Denkert C, Untch M (2021) Durvalumab improves long-term outcome in TNBC: results from the phase II randomized GeparNUEVO study investigating neodjuvant durvalumab in addition to an anthracycline/taxane based neoadjuvant chemotherapy in early triple-negative breast cancer (TNBC). J Clin Oncol 39:506–506. https://doi.org/10.1200/JCO.2021.39.15_suppl.506

    Article  Google Scholar 

  50. Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, Bergh J, Denkert C, Park YH, Hui R, Harbeck N, Takahashi M, Untch M, Fasching PA, Cardoso F, Ding Y, Tryfonidis K, Aktan G, Karantza V, O’Shaughnessy J (2021) VP7-2021: KEYNOTE-522: Phase III study of neoadjuvant pembrolizumab + chemotherapy vs. placebo + chemotherapy, followed by adjuvant pembrolizumab vs. placebo for early-stage TNBC. Ann Oncol 32:1198–1200. https://doi.org/10.1016/j.annonc.2021.06.014

    Article  Google Scholar 

  51. Mushti SL, Mulkey F, Sridhara R (2018) Evaluation of overall response rate and progression-free survival as potential surrogate endpoints for overall survival in immunotherapy trials. Clin Cancer Res 24:2268–2275. https://doi.org/10.1158/1078-0432.Ccr-17-1902

    Article  CAS  PubMed  Google Scholar 

  52. Roviello G, Andre F, Venturini S, Pistilli B, Curigliano G, Cristofanilli M, Rosellini P, Generali D (2017) Response rate as a potential surrogate for survival and efficacy in patients treated with novel immune checkpoint inhibitors: A meta-regression of randomised prospective studies. Eur J Cancer 86:257–265. https://doi.org/10.1016/j.ejca.2017.09.018

    Article  CAS  PubMed  Google Scholar 

  53. Han J, Zhao Y, Shirai K, Molodtsov A, Kolling FW, Fisher JL, Zhang P, Yan S, Searles TG, Bader JM, Gui J, Cheng C, Ernstoff MS, Turk MJ, Angeles CV (2021) Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat Cancer 2:300–311. https://doi.org/10.1038/s43018-021-00180-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668. https://doi.org/10.1038/s41577-020-0306-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson DB, Nebhan CA, Moslehi JJ, Balko JM (2022) Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. https://doi.org/10.1038/s41571-022-00600-w

    Article  PubMed  PubMed Central  Google Scholar 

  56. Patrinely JR Jr, Johnson R, Lawless AR, Bhave P, Sawyers A, Dimitrova M, Yeoh HL, Palmeri M, Ye F, Fan R, Davis EJ, Rapisuwon S, Long GV, Haydon A, Osman I, Mehnert JM, Carlino MS, Sullivan RJ, Menzies AM, Johnson DB (2021) Chronic immune-related adverse events following adjuvant anti-PD-1 therapy for high-risk resected melanoma. JAMA Oncol 7:744–748. https://doi.org/10.1001/jamaoncol.2021.0051

    Article  PubMed  Google Scholar 

  57. Miles D, Gligorov J, André F, Cameron D, Schneeweiss A, Barrios CH, Xu B, Wardley AM, Kaen D, Andrade L, Semiglazov V, Reinisch M, Patre M, Morales L, Russell K, Donica M, O’Shaughnessy J (2020) Primary results from IMpassion131, a double-blind placebo-controlled randomised phase III trial offirst-line paclitaxel (PAC) ±atezolizumab (atezo) for unresectable locally advanced/metastatictriple-negative breast cancer (mTNBC). Ann Oncol 20:S1142

    Google Scholar 

  58. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21:1688–1698. https://doi.org/10.1158/1078-0432.Ccr-14-0432

    Article  CAS  PubMed  Google Scholar 

  59. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121:2750–2767. https://doi.org/10.1172/jci45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE. https://doi.org/10.1371/journal.pone.0157368

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803. https://doi.org/10.1200/jco.2005.04.937

    Article  CAS  PubMed  Google Scholar 

  62. Untch M, Jackisch C, Schneeweiss A, Conrad B, Aktas B, Denkert C, Eidtmann H, Wiebringhaus H, Kümmel S, Hilfrich J, Warm M, Paepke S, Just M, Hanusch C, Hackmann J, Blohmer JU, Clemens M, Darb-Esfahani S, Schmitt WD, Dan Costa S, Gerber B, Engels K, Nekljudova V, Loibl S, von Minckwitz G (2016) Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 17:345–356. https://doi.org/10.1016/s1470-2045(15)00542-2

    Article  CAS  PubMed  Google Scholar 

  63. Untch M, Jackisch C, Schneeweiss A, Schmatloch S, Aktas B, Denkert C, Schem C, Wiebringhaus H, Kümmel S, Warm M, Fasching PA, Just M, Hanusch C, Hackmann J, Blohmer JU, Rhiem K, Schmitt WD, Furlanetto J, Gerber B, Huober J, Nekljudova V, von Minckwitz G, Loibl S (2019) NAB-paclitaxel improves disease-free survival in early breast cancer: GBG 69-GeparSepto. J Clin Oncol 37:2226–2234. https://doi.org/10.1200/jco.18.01842

    Article  CAS  PubMed  Google Scholar 

  64. Li Y, Chang C-W, Tran D, Denker M, Hegde P, Molinero L (2018) Abstract PD6–01: Prevalence of PDL1 and tumor infiltrating lymphocytes (TILs) in primary and metastatic TNBC. Cancer Res. https://doi.org/10.1158/1538-7445.Sabcs17-pd6-01

    Article  PubMed  PubMed Central  Google Scholar 

  65. Szekely B, Bossuyt V, Li X, Wali VB, Patwardhan GA, Frederick C, Silber A, Park T, Harigopal M, Pelekanou V, Zhang M, Yan Q, Rimm DL, Bianchini G, Hatzis C, Pusztai L (2018) Immunological differences between primary and metastatic breast cancer. Ann Oncol 29:2232–2239. https://doi.org/10.1093/annonc/mdy399

    Article  CAS  PubMed  Google Scholar 

  66. Zhu L, Narloch JL, Onkar S, Joy M, Broadwater G, Luedke C, Hall A, Kim R, Pogue-Geile K, Sammons S, Nayyar N, Chukwueke U, Brastianos PK, Anders CK, Soloff AC, Vignali DAA, Tseng GC, Emens LA, Lucas PC, Blackwell KL, Oesterreich S, Lee AV (2019) Metastatic breast cancers have reduced immune cell recruitment but harbor increased macrophages relative to their matched primary tumors. J Immunother Cancer 7:265. https://doi.org/10.1186/s40425-019-0755-1

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rugo HS, Loi S, Adams S, Schmid P, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Winer EP, Kockx MM, Peeters D, Chui SY, Lin JC, Duc AN, Viale G, Molinero L, Emens LA (2021) PD-L1 immunohistochemistry assay comparison in atezolizumab plus nab-paclitaxel-treated advanced triple-negative breast cancer. J Natl Cancer Inst 113:1733–1743. https://doi.org/10.1093/jnci/djab108

    Article  CAS  PubMed Central  Google Scholar 

  68. Rugo HS, Loi S, Adams S, Schmid P, Schneeweiss A, Barrios CH, Iwata H, Dieras VC, Winer EP, Kockx M, Peeters D, Chui SY, Lin JC, Nguyen Duc A, Viale G, Molinero L, Emens LA (2019) Performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC): post-hoc analysis of IMpassion130. Ann Oncol 30:v858–v859. https://doi.org/10.1093/annonc/mdz394.009

    Article  Google Scholar 

  69. Tolaney SM, Kalinsky K, Kaklamani VG, D’Adamo DR, Aktan G, Tsai ML, O’Regan R, Kaufman PA, Wilks S, Andreopoulou E, Patt DA, Yuan Y, Wang G, Xing D, Kleynerman E, Karantza V, Diab S (2020) A phase Ib/II study of eribulin (ERI) plus pembrolizumab (PEMBRO) in metastatic triple-negative breast cancer (mTNBC) (ENHANCE 1). J Clin Oncol 38:1015–1015. https://doi.org/10.1200/JCO.2020.38.15_suppl.1015

    Article  Google Scholar 

  70. Pascual J, Turner NC (2019) Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol 30:1051–1060. https://doi.org/10.1093/annonc/mdz133

    Article  CAS  PubMed  Google Scholar 

  71. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, Williams LJ, Deng W, Chen G, Mbofung R, Lazar AJ, Torres-Cabala CA, Cooper ZA, Chen PL, Tieu TN, Spranger S, Yu X, Bernatchez C, Forget MA, Haymaker C, Amaria R, McQuade JL, Glitza IC, Cascone T, Li HS, Kwong LN, Heffernan TP, Hu J, Bassett RL Jr, Bosenberg MW, Woodman SE, Overwijk WW, Lizée G, Roszik J, Gajewski TF, Wargo JA, Gershenwald JE, Radvanyi L, Davies MA, Hwu P (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6:202–216. https://doi.org/10.1158/2159-8290.Cd-15-0283

    Article  CAS  PubMed  Google Scholar 

  72. George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, Hammerman P, Freeman GJ, Wu CJ, Ott PA, Wong KK, Van Allen EM (2017) Loss of PTEN Is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46:197–204. https://doi.org/10.1016/j.immuni.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barroso-Sousa R, Keenan TE, Pernas S, Exman P, Jain E, Garrido-Castro AC, Hughes M, Bychkovsky B, Umeton R, Files JL, Lindeman NI, MacConaill LE, Hodi FS, Krop IE, Dillon D, Winer EP, Wagle N, Lin NU, Mittendorf EA, Van Allen EM, Tolaney SM (2020) Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer. Clin Cancer Res 26:2565–2572. https://doi.org/10.1158/1078-0432.Ccr-19-3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chandrasekaran S, Sasaki M, Scharer CD, Kissick HT, Patterson DG, Magliocca KR, Seykora JT, Sapkota B, Gutman DA, Cooper LA, Lesinski GB, Waller EK, Thomas SN, Kotenko SV, Boss JM, Moreno CS, Swerlick RA, Pollack BP (2019) Phosphoinositide 3-kinase signaling can modulate MHC class I and II expression. Mol Cancer Res MCR 17:2395–2409. https://doi.org/10.1158/1541-7786.Mcr-19-0545

    Article  CAS  PubMed  Google Scholar 

  75. Crompton JG, Sukumar M, Roychoudhuri R, Clever D, Gros A, Eil RL, Tran E, Hanada K, Yu Z, Palmer DC, Kerkar SP, Michalek RD, Upham T, Leonardi A, Acquavella N, Wang E, Marincola FM, Gattinoni L, Muranski P, Sundrud MS, Klebanoff CA, Rosenberg SA, Fearon DT, Restifo NP (2015) Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 75:296–305. https://doi.org/10.1158/0008-5472.Can-14-2277

    Article  CAS  PubMed  Google Scholar 

  76. Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L, Schmidt M, Mills GB, Mendelsohn J, Fan Z (2003) HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22:3205–3212. https://doi.org/10.1038/sj.onc.1206394

    Article  CAS  PubMed  Google Scholar 

  77. Schmid P, Loirat D, Savas P, Espinosa E, Boni V, Italiano A, White S, Singel SM, Withana N, Mani A, Li S, Harris A, Wongchenko M, Sablin M (2019) Abstract CT049: phase Ib study evaluating a triplet combination of ipatasertib (IPAT), atezolizumab (atezo), and paclitaxel (PAC) or nab-PAC as first-line (1L) therapy for locally advanced/metastatic triple-negative breast cancer (TNBC). Cancer Res. https://doi.org/10.1158/1538-7445.Am2019-ct049

    Article  Google Scholar 

  78. Schmid P, Savas P, Espinosa E, Boni V, Italiano A, White S, Cheng K, Lam L, Robert L, Laliman V, Shah K, Sablin M-P (2021) Abstract PS12–28: phase 1b study evaluating a triplet combination of ipatasertib (IPAT), atezolizumab, and a taxane as first-line therapy for locally advanced/metastatic triple-negative breast cancer (TNBC). Cancer Res. https://doi.org/10.1158/1538-7445.Sabcs20-ps12-28

    Article  PubMed  Google Scholar 

  79. Schmid P, Loirat D, Savas P, Espinosa E, Boni V, Italiano A, White S, Laliman V, Strasser G, Lin K, Cheng K, Mani A, Wongchenko M, Sablin M-P, Shah K (2021) Abstract PD14–03: molecular mechanism of ipatasertib (IPAT) and its combination with atezolizumab (atezo) in patients (pts) with locally advanced/metastatic triple-negative breast cancer (aTNBC). Cancer Res. https://doi.org/10.1158/1538-7445.Sabcs20-pd14-03

    Article  PubMed  Google Scholar 

  80. Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, Sánchez V, Sanders ME, Cook RS, Pilkinton MA, Mallal SA, Wang K, Miller VA, Stephens PJ, Yelensky R, Doimi FD, Gómez H, Ryzhov SV, Darcy PK, Arteaga CL, Balko JM (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22:1499–1509. https://doi.org/10.1158/1078-0432.Ccr-15-1125

    Article  CAS  PubMed  Google Scholar 

  81. McDaid HM, Horwitz SB (2001) Selective potentiation of paclitaxel (taxol)-induced cell death by mitogen-activated protein kinase kinase inhibition in human cancer cell lines. Mol Pharmacol 60:290–301. https://doi.org/10.1124/mol.60.2.290

    Article  CAS  PubMed  Google Scholar 

  82. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  83. Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, Sanders ME, Granja-Ingram NM, Smith JJ, Meszoely IM, Salter J, Dowsett M, Stemke-Hale K, González-Angulo AM, Mills GB, Pinto JA, Gómez HL, Arteaga CL (2012) Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med 18:1052–1059. https://doi.org/10.1038/nm.2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V, Ficarra G, Mathieu MC, Delaloge S, Curigliano G, Andre F (2014) Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol 25:611–618. https://doi.org/10.1093/annonc/mdt556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brufsky A, Kim SB, Zvirbule Ž, Eniu A, Mebis J, Sohn JH, Wongchenko M, Chohan S, Amin R, Yan Y, McNally V, Miles D, Loi S (2021) A phase II randomized trial of cobimetinib plus chemotherapy, with or without atezolizumab, as first-line treatment for patients with locally advanced or metastatic triple-negative breast cancer (COLET): primary analysis. Ann Oncol. https://doi.org/10.1016/j.annonc.2021.01.065

    Article  PubMed  Google Scholar 

  86. Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP, Bergers G (2017) Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aak9679

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller HJ, Ooi CH, Laoui D, De Palma M (2017) Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aak9670

    Article  PubMed  Google Scholar 

  88. Qin G, Wang X, Ye S, Li Y, Chen M, Wang S, Qin T, Zhang C, Li Y, Long Q, Hu H, Shi D, Li J, Zhang K, Zhai Q, Tang Y, Kang T, Lan P, Xie F, Lu J, Deng W (2020) NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer. Nat Commun 11:1669. https://doi.org/10.1038/s41467-020-15364-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D (2017) Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer 5:53. https://doi.org/10.1186/s40425-017-0257-y

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, Zhao YW, Wei YQ (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7:e50946. https://doi.org/10.1371/journal.pone.0050946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Rüttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:846–859. https://doi.org/10.1016/j.ccr.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  92. Leone RD, Emens LA (2018) Targeting adenosine for cancer immunotherapy. J Immunother Cancer 6:57. https://doi.org/10.1186/s40425-018-0360-8

    Article  PubMed  PubMed Central  Google Scholar 

  93. Iwata TN, Ishii C, Ishida S, Ogitani Y, Wada T, Agatsuma T (2018) A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther 17:1494–1503. https://doi.org/10.1158/1535-7163.Mct-17-0749

    Article  CAS  PubMed  Google Scholar 

  94. Müller P, Martin K, Theurich S, Schreiner J, Savic S, Terszowski G, Lardinois D, Heinzelmann-Schwarz VA, Schlaak M, Kvasnicka HM, Spagnoli G, Dirnhofer S, Speiser DE, von Bergwelt-Baildon M, Zippelius A (2014) Microtubule-depolymerizing agents used in antibody–drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res 2:741–755. https://doi.org/10.1158/2326-6066.Cir-13-0198

    Article  PubMed  Google Scholar 

  95. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, Thomas SS, Govindan SV, Maliakal PP, Wegener WA, Hamburger SA, Sharkey RM, Goldenberg DM (2015) First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res 21:3870–3878. https://doi.org/10.1158/1078-0432.Ccr-14-3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bardia A, Tolaney SM, Loirat D, Punie K, Oliveira M, Rugo HS, Brufsky A, Kalinsky K, Cortés J, O’Shaughnessy J, Dieras VC, Carey LA, Gianni L, Piccart M, Loibl S, Goldenberg D, Hong Q, Olivo MS, Itri LM, Hurvitz SA (2020) LBA17 ASCENT: a randomized phase III study of sacituzumab govitecan (SG) vs treatment of physician’s choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). Ann Oncol 31:S1149–S1150. https://doi.org/10.1016/j.annonc.2020.08.2245

    Article  Google Scholar 

  97. Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, Miyamoto JB, Nesterova A, Westendorf L, Van Epps HA, Whiting N, Benjamin DR (2014) SGN-LIV1A: a novel antibody–drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther 13:2991–3000. https://doi.org/10.1158/1535-7163.Mct-13-0896

    Article  CAS  PubMed  Google Scholar 

  98. Han H, Diab S, Alemany C, Basho R, Brown-Glaberman U, Meisel J, Pluard T, Cortes J, Dillon P, Ettl J, Kuemmel S, Sanchez LM, Oliveira M, O’Shaughnessy J, Papish S, Sinha R, Sterrenberg D, Stringer-Reasor E, Tsai M, Vazquez RV, Wuerstlein R, Wang Y, Wang Z, Boni V (2020) Abstract PD1–06: Open label phase 1b/2 study of ladiratuzumab vedotin in combination with pembrolizumab for first-line treatment of patients with unresectable locally-advanced or metastatic triple-negative breast cancer. Cancer Res. https://doi.org/10.1158/1538-7445.Sabcs19-pd1-06

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T (2016) DS-8201a, a novel HER2-Targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 22:5097–5108. https://doi.org/10.1158/1078-0432.Ccr-15-2822

    Article  CAS  PubMed  Google Scholar 

  100. Herrera AF, Moskowitz AJ, Bartlett NL, Vose JM, Ramchandren R, Feldman TA, LaCasce AS, Ansell SM, Moskowitz CH, Fenton K, Ogden CA, Taft D, Zhang Q, Kato K, Campbell M, Advani RH (2018) Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 131:1183–1194. https://doi.org/10.1182/blood-2017-10-811224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hamilton E, Shapiro CL, Petrylak DP, Boni V, Martin M, Del Conte G, Cortes J, Agarwal L, Arkenau H, Tan AR, Debruyne P, Minchom A, Rutten A, Valdes-Albini F, Yu EY, Augustine B, D'Amelio A, Barrios D, Hurvitz S (2020) Trastuzumab deruxtecan (T-DXd; DS-8201) with nivolumab in patients with HER2-expressing, advanced breast cancer: a 2-part, phase 1b, multicenter, open-label study [abstract]. Presented at the 2020 San Antonio Breast Cancer Symposium

Download references

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Contributions

This was an invited review. The literature search and initial draft manuscript were done by PEH. PS critically revised the manuscript.

Corresponding author

Correspondence to Peter E. Hall.

Ethics declarations

Conflict of interest

PEH has received honoraria from Pfizer, Eisai, MSD and conference expenses from Lilly. PS has received honoraria from AstraZeneca, Pfizer, Novartis, Roche; has a consulting or advisory role with Genentech/Roche, AstraZeneca, Merck, Boehringer Ingelheim, Bayer, Pfizer, Novartis, Eisai, Celgene, Puma Biotechnology; has received institutional research funding from AstraZeneca, Astellas Pharma, Medivation, Oncogenex, Genentech, Novartis, Roche, Merck; has an immediate family member employed by Roche.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, P.E., Schmid, P. Emerging strategies for TNBC with early clinical data: new chemoimmunotherapy strategies. Breast Cancer Res Treat 193, 21–35 (2022). https://doi.org/10.1007/s10549-022-06547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06547-x

Keywords

Navigation