Skip to main content

Advertisement

Log in

Radiation therapy for triple-negative breast cancer: emerging role of microRNAs as biomarkers and radiosensitivity modifiers. A systematic review

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Radiation therapy (RT) for triple-negative breast cancer (TNBC) treatment is currently delivered in the adjuvant setting and is under investigation as a booster of neoadjuvant treatments. However, TNBC radioresistance remains an obstacle, so new biomarkers are needed to select patients for any integration of RT in the TNBC therapy sequence. MicroRNAs (miRs) are important regulators of gene expression, involved in cancer response to ionizing radiation (IR) and assessable by tumor tissue or liquid biopsy. This systematic review aimed to evaluate the relationships between miRs and response to radiation in TNBC, as well as their potential predictive and prognostic values.

Methods

A thorough review of studies related to miRs and RT in TNBC was performed on PubMed, EMBASE, and Web of Science. We searched for original English articles that involved dysregulation of miRs in response to IR on TNBC-related preclinical and clinical studies. After a rigorous selection, 44 studies were chosen for further analysis.

Results

Thirty-five miRs were identified to be TNBC related, out of which 21 were downregulated, 13 upregulated, and 2 had a double-side expression in this cancer. Expression modulation of many of these miRs is radiosensitizing, among which miR-7, -27a, -34a, -122, and let-7 are most studied, still only in experimental models. The miRs reported as most influencing/reflecting TNBC response to IR are miR-7, -27a, -155, -205, -211, and -221, whereas miR-21, -33a, -139-5p, and -210 are associated with TNBC patient outcome after RT.

Conclusion

miRs are emerging biomarkers and radiosensitizers in TNBC, worth further investigation. Dynamic assessment of circulating miRs could improve monitoring and TNBC RT efficacy, which are of particular interest in the neoadjuvant and the high-risk patients’ settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APBI:

Accelerated partial breast irradiation

BC:

Breast cancer

CSC:

Cancer stem cells

DDR:

DNA damage repair

DFS:

Disease-free survival

DMFS:

Distant metastasis-free survival

EMT:

Epithelial–mesenchymal transition

ER:

Estrogen receptor

FFPE:

Formalin-fixed paraffin-embedded

IR:

Ionizing radiation

HR:

Homologous recombination

miR:

MicroRNA

NACT:

Neoadjuvant chemotherapy

OS:

Overall survival

pCR:

Pathological complete response

PTEN:

Phosphatase and tensin homolog

RT:

Radiation therapy

S1P:

Sphingosine-1-phosphatase

TCGA:

The Cancer Genome Atlas

TME:

Tumor microenvironment

TNBC:

Triple-negative breast cancer

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Perou CM, Sørlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  3. Jones T, Neboori H, Wu H et al (2013) Are breast cancer subtypes prognostic for nodal involvement and associated with clinicopathologic features at presentation in early-stage breast cancer? Ann Surg Oncol 20:2866–2872. https://doi.org/10.1245/s10434-013-2994-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin NU, Vanderplas A, Hughes ME et al (2012) Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 118:5463–5472. https://doi.org/10.1002/cncr.27581

    Article  PubMed  Google Scholar 

  5. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

    Article  PubMed  Google Scholar 

  6. Liedtke C, Mazouni C, Hess KR et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. JCO 26:1275–1281. https://doi.org/10.1200/JCO.2007.14.4147

    Article  Google Scholar 

  7. Loibl S, O’Shaughnessy J, Untch M et al (2018) Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 19:497–509. https://doi.org/10.1016/S1470-2045(18)30111-6

    Article  CAS  PubMed  Google Scholar 

  8. Schmid P, Adams S, Rugo HS et al (2018) Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  9. Corradini S, Krug D, Meattini I et al (2019) Preoperative radiotherapy: A paradigm shift in the treatment of breast cancer? A review of literature. Crit Rev Oncol Hematol 141:102–111. https://doi.org/10.1016/j.critrevonc.2019.06.003

    Article  PubMed  Google Scholar 

  10. Ahmed M, Jozsa F, Douek M (2021) A systematic review of neo-adjuvant radiotherapy in the treatment of breast cancer. Ecancermedicalscience 15:1175. https://doi.org/10.3332/ecancer.2021.1175

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weichselbaum RR, Liang H, Deng L, Fu Y-X (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14:365–379. https://doi.org/10.1038/nrclinonc.2016.211

    Article  CAS  PubMed  Google Scholar 

  12. Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I et al (2018) Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol 39:644–655. https://doi.org/10.1016/j.it.2018.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohammadi C, Gholamzadeh Khoei S, Fayazi N et al (2021) miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 157:103183. https://doi.org/10.1016/j.critrevonc.2020.103183

    Article  PubMed  Google Scholar 

  14. Kahraman M, Röske A, Laufer T et al (2018) MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep 8:11584. https://doi.org/10.1038/s41598-018-29917-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  16. Bernichon E, Vallard A, Wang Q et al (2017) Genomic alterations and radioresistance in breast cancer: an analysis of the ProfiLER protocol. Ann Oncol 28:2773–2779. https://doi.org/10.1093/annonc/mdx488

    Article  CAS  PubMed  Google Scholar 

  17. Gee HE, Buffa FM, Harris AL et al (2015) MicroRNA-Related DNA Repair/cell-cycle genes independently associated with relapse after radiation therapy for early breast cancer. Int J Radiat Oncol Biol Phys 93:1104–1114. https://doi.org/10.1016/j.ijrobp.2015.08.046

    Article  CAS  PubMed  Google Scholar 

  18. Magbanua MJM, Swigart LB, Wu H-T et al (2021) Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol 32:229–239. https://doi.org/10.1016/j.annonc.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Yee D (2019) I-SPY 2: a neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Curr Breast Cancer Rep 11:303–310. https://doi.org/10.1007/s12609-019-00334-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19:A68–A77. https://doi.org/10.5114/wo.2014.47136

    Article  Google Scholar 

  21. Welsh J (2013) Chapter 40 - Animal Models for Studying Prevention and Treatment of Breast Cancer. In: Conn PM (ed) Animal Models for the Study of Human Disease. Academic Press, Boston, pp 997–1018

    Chapter  Google Scholar 

  22. Wang B, Wang H, Yang Z (2012) MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS ONE 7:e47053. https://doi.org/10.1371/journal.pone.0047053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perez-Añorve IX, la Rosa CHG-D, Soto-Reyes E et al (2019) New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol Oncol 13:1249–1267. https://doi.org/10.1002/1878-0261.12483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun Q, Liu T, Yuan Y et al (2015) MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer 136:1003–1012. https://doi.org/10.1002/ijc.29065

    Article  CAS  PubMed  Google Scholar 

  25. Su Y, Shih P-H, Lee W-H et al (2017) Antrodia cinnamomea sensitizes radio-/chemo-therapy of cancer stem-like cells by modulating microRNA expression. J Ethnopharmacol 207:47–56. https://doi.org/10.1016/j.jep.2017.06.004

    Article  CAS  PubMed  Google Scholar 

  26. Masoudi-Khoram N, Abdolmaleki P, Hosseinkhan N et al (2020) Differential miRNAs expression pattern of irradiated breast cancer cell lines is correlated with radiation sensitivity. Sci Rep 10:9054. https://doi.org/10.1038/s41598-020-65680-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang B, Zheng J, Li R et al (2019) Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells. Cell Death Dis 10:1–15. https://doi.org/10.1038/s41419-019-1996-0

    Article  CAS  Google Scholar 

  28. Zhang P, Wang L, Rodriguez-Aguayo C et al (2014) miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun 5:5671. https://doi.org/10.1038/ncomms6671

    Article  CAS  PubMed  Google Scholar 

  29. Liang Z, Ahn J, Guo D et al (2013) MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res 30:1008–1016. https://doi.org/10.1007/s11095-012-0936-9

    Article  CAS  PubMed  Google Scholar 

  30. Anastasov N, Hirmer E, Klenner M et al (2020) MEK1 Inhibitor combined with irradiation reduces migration of breast cancer cells including miR-221 and ZEB1 EMT Marker Expression. Cancers 12:3760. https://doi.org/10.3390/cancers12123760

    Article  CAS  PubMed Central  Google Scholar 

  31. Luo J, Chen J, He L (2015) mir-129–5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1. Med Sci Monit 21:4122–4129. https://doi.org/10.12659/msm.896661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koo T, Cho BJ, Kim DH et al (2017) MicroRNA-200c increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Oncotarget 8:65457–65468. https://doi.org/10.18632/oncotarget.18924

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee KM, Choi EJ, Kim IA (2011) microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol 101:171–176. https://doi.org/10.1016/j.radonc.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Sun Z, Sun H, Li Y (2018) MicroRNA-27a promotes tumorigenesis via targeting AKT in triple negative breast cancer. Mol Med Rep 17:562–570. https://doi.org/10.3892/mmr.2017.7886

    Article  CAS  PubMed  Google Scholar 

  35. Yu L, Yang Y, Hou J et al (2015) MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol Rep 34:1845–1852. https://doi.org/10.3892/or.2015.4173

    Article  CAS  PubMed  Google Scholar 

  36. Huang X, Taeb S, Jahangiri S et al (2013) miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res 73:6972–6986. https://doi.org/10.1158/0008-5472.CAN-13-1657

    Article  CAS  PubMed  Google Scholar 

  37. Bonnaud S, Niaudet C, Legoux F et al (2010) Sphingosine-1-Phosphate Activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Res 70:9905–9915

    Article  CAS  PubMed  Google Scholar 

  38. Levine AJ, Hu W, Feng Z (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036. https://doi.org/10.1038/sj.cdd.4401910

    Article  CAS  PubMed  Google Scholar 

  39. Wong MYW, Yu Y, Walsh WR, Yang J-L (2011) microRNA-34 family and treatment of cancers with mutant or wild-type p53 (Review). Int J Oncol 38:1189–1195. https://doi.org/10.3892/ijo.2011.970

    Article  CAS  PubMed  Google Scholar 

  40. He X, He L, Hannon GJ (2007) The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67:11099–11101. https://doi.org/10.1158/0008-5472.CAN-07-2672

    Article  CAS  PubMed  Google Scholar 

  41. Lodygin D, Tarasov V, Epanchintsev A et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600. https://doi.org/10.4161/cc.7.16.6533

    Article  CAS  PubMed  Google Scholar 

  42. Kato M, Paranjape T, Ullrich R et al (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28:2419–2424. https://doi.org/10.1038/onc.2009.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Klein HL (2008) The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 7:686–693. https://doi.org/10.1016/j.dnarep.2007.12.008

    Article  CAS  Google Scholar 

  44. Bayraktar R, Van Roosbroeck K (2018) miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev 37:33–44. https://doi.org/10.1007/s10555-017-9724-7

    Article  PubMed  Google Scholar 

  45. Gasparini P, Lovat F, Fassan M et al (2014) Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. PNAS 111:4536–4541. https://doi.org/10.1073/pnas.1402604111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA et al (2019) Extracellular-signal regulated kinase: a central molecule driving epithelial-mesenchymal transition in cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20122885

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tripathi K, Garg M (2018) Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer. J Cell Commun Signal 12:513–527. https://doi.org/10.1007/s12079-017-0441-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shah MY, Calin GA (2011) MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med 3:56. https://doi.org/10.1186/gm272

    Article  PubMed  PubMed Central  Google Scholar 

  49. Howe EN, Cochrane DR, Richer JK (2011) Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 13:R45. https://doi.org/10.1186/bcr2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin J, Liu C, Gao F et al (2013) miR-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem 114:606–615. https://doi.org/10.1002/jcb.24398

    Article  CAS  PubMed  Google Scholar 

  51. Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M (2012) Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol 22:151–174. https://doi.org/10.1016/j.semradonc.2011.12.003

    Article  PubMed  Google Scholar 

  52. Lytle NK, Barber AG, Reya T (2018) Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer 18:669–680. https://doi.org/10.1038/s41568-018-0056-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Griñán-Lisón C, Olivares-Urbano MA, Jiménez G et al (2020) miRNAs as radio-response biomarkers for breast cancer stem cells. Mol Oncol 14:556–570. https://doi.org/10.1002/1878-0261.12635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun H, Ding C, Zhang H, Gao J (2016) Let-7 miRNAs sensitize breast cancer stem cells to radiation-induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway. Mol Med Rep 14:3285–3292. https://doi.org/10.3892/mmr.2016.5656

    Article  CAS  PubMed  Google Scholar 

  55. Wang L, Yuan C, Lv K et al (2013) Lin28 mediates radiation resistance of breast cancer cells via regulation of caspase, H2A.X and Let-7 Signaling. PLoS ONE 8:e67373. https://doi.org/10.1371/journal.pone.0067373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Many AM, Brown AMC (2014) Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres. PLoS ONE 9:e101800. https://doi.org/10.1371/journal.pone.0101800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Troschel FM, Böhly N, Borrmann K et al (2018) miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance in vitro. Tumour Biol 40:1010428318791887. https://doi.org/10.1177/1010428318791887

    Article  CAS  PubMed  Google Scholar 

  58. Smith AG, Macleod KF (2019) Autophagy, cancer stem cells and drug resistance. J Pathol 247:708–718. https://doi.org/10.1002/path.5222

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yi H, Liang B, Jia J et al (2013) Differential roles of miR-199a-5p in radiation-induced autophagy in breast cancer cells. FEBS Lett 587:436–443. https://doi.org/10.1016/j.febslet.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  60. Metheetrairut C, Adams BD, Nallur S et al (2017) cel-mir-237 and its homologue, hsa-miR-125b, modulate the cellular response to ionizing radiation. Oncogene 36:512–524. https://doi.org/10.1038/onc.2016.222

    Article  CAS  PubMed  Google Scholar 

  61. Jang MH, Kim HJ, Gwak JM et al (2017) Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum Pathol 68:69–78. https://doi.org/10.1016/j.humpath.2017.08.026

    Article  CAS  PubMed  Google Scholar 

  62. Kim ES, Choi YE, Hwang SJ et al (2016) IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells. Oncotarget 7:86836–86856. https://doi.org/10.18632/oncotarget.13561

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wolfe AR, Bambhroliya A, Reddy JP et al (2016) MiR-33a decreases radiation sensitivity to high-density lipoprotein in breast cancer. Int J Radiat Oncol Biol Phys 95:791–799. https://doi.org/10.1016/j.ijrobp.2016.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pajic M, Froio D, Daly S et al (2018) miR-139-5p Modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA Repair and ROS Defense. Cancer Res 78:501–515. https://doi.org/10.1158/0008-5472.CAN-16-3105

    Article  CAS  PubMed  Google Scholar 

  65. Anastasov N, Höfig I, Vasconcellos IG et al (2012) Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol 7:206. https://doi.org/10.1186/1748-717X-7-206

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li Y, Liang Y, Sang Y et al (2018) MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 9:1–12. https://doi.org/10.1038/s41419-017-0030-7

    Article  CAS  Google Scholar 

  67. Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31:577–577. https://doi.org/10.1038/nbt0713-577

    Article  CAS  PubMed  Google Scholar 

  68. Kristen AV, Ajroud-Driss S, Conceição I et al (2018) Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegenerative Disease Management 9:5–23. https://doi.org/10.2217/nmt-2018-0033

    Article  PubMed  Google Scholar 

  69. Hanna J, Hossain GS, Kocerha J (2019) The Potential for microRNA Therapeutics and Clinical Research. Front Genet. https://doi.org/10.3389/fgene.2019.00478

    Article  PubMed  PubMed Central  Google Scholar 

  70. Janssen HLA, Reesink HW, Lawitz EJ et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694. https://doi.org/10.1056/NEJMoa1209026

    Article  CAS  PubMed  Google Scholar 

  71. van Zandwijk N, Pavlakis N, Kao SC et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18:1386–1396. https://doi.org/10.1016/S1470-2045(17)30621-6

    Article  PubMed  Google Scholar 

  72. Jin X, Chen Y, Chen H et al (2017) Evaluation of Tumor-Derived Exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 23:5311–5319. https://doi.org/10.1158/1078-0432.CCR-17-0577

    Article  CAS  PubMed  Google Scholar 

  73. Schwarzenbach H, Nishida N, Calin GA, Pantel K (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 11:145–156. https://doi.org/10.1038/nrclinonc.2014.5

    Article  CAS  PubMed  Google Scholar 

  74. Zampetaki A, Mayr M (2012) Analytical challenges and technical limitations in assessing circulating MiRNAs. Thromb Haemost 108:592–598. https://doi.org/10.1160/TH12-02-0097

    Article  CAS  PubMed  Google Scholar 

  75. Faraldi M, Gomarasca M, Sansoni V et al (2019) Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci Rep 9:1584. https://doi.org/10.1038/s41598-019-38505-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao H, Shen J, Medico L et al (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE 5:e13735. https://doi.org/10.1371/journal.pone.0013735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meder B, Backes C, Haas J et al (2014) Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem 60:1200–1208. https://doi.org/10.1373/clinchem.2014.224238

    Article  CAS  PubMed  Google Scholar 

  78. Chiarantini L, Cerasi A, Fraternale A et al (2005) Comparison of novel delivery systems for antisense peptide nucleic acids. J Control Release 109:24–36. https://doi.org/10.1016/j.jconrel.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  79. Meng Z, Lu M (2017) RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant? Front Immunol 8:331. https://doi.org/10.3389/fimmu.2017.00331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Z (2011) The guideline of the design and validation of MiRNA mimics. Methods Mol Biol 676:211–223. https://doi.org/10.1007/978-1-60761-863-8_15

    Article  CAS  PubMed  Google Scholar 

  81. Mei Z, Su T, Ye J et al (2015) The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res 183:196–207. https://doi.org/10.1667/RR13784.1

    Article  CAS  PubMed  Google Scholar 

  82. Leung C-M, Chen T-W, Li S-C et al (2014) MicroRNA expression profiles in human breast cancer cells after multifraction and single-dose radiation treatment. Oncol Rep 31:2147–2156. https://doi.org/10.3892/or.2014.3089

    Article  CAS  PubMed  Google Scholar 

  83. Radulovic V, Heider T, Richter S et al (2017) Differential response of normal and transformed mammary epithelial cells to combined treatment of anti-miR-21 and radiation. Int J Radiat Biol 93:361–372. https://doi.org/10.1080/09553002.2016.1266057

    Article  CAS  PubMed  Google Scholar 

  84. Zhang X, Li Y, Wang D, Wei X (2017) miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res 50:27. https://doi.org/10.1186/s40659-017-0133-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ren Y, Fu F, Han J (2015) MiR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27. Med Sci Monit 21:1297–1303. https://doi.org/10.12659/MSM.893974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lai Y, Chen Y, Lin Y, Ye L (2018) Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer. Cell Biol Int 42:227–236. https://doi.org/10.1002/cbin.10890

    Article  CAS  PubMed  Google Scholar 

  87. Farsinejad S, Rahaie M, Alizadeh AM et al (2016) Expression of the circulating and the tissue microRNAs after surgery, chemotherapy, and radiotherapy in mice mammary tumor. Tumor Biol 37:14225–14234. https://doi.org/10.1007/s13277-016-5292-7

    Article  CAS  Google Scholar 

  88. Zhang Z-Q, Cao Z, Liu C et al (2016) MiRNA-Embedded ShRNAs for Radiation-Inducible LGMN knockdown and the antitumor effects on breast cancer. PLoS ONE 11:e0163446. https://doi.org/10.1371/journal.pone.0163446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bing Z, Tian J, Zhang J et al (2016) An Integrative Model of miRNA and mRNA expression signature for patients of breast invasive carcinoma with radiotherapy prognosis. Cancer Biother Radiopharm 31:253–260. https://doi.org/10.1089/cbr.2016.2059

    Article  CAS  PubMed  Google Scholar 

  90. Moskwa P, Buffa FM, Pan Y et al (2011) miR-182-Mediated Downregulation of BRCA1 Impacts DNA Repair and Sensitivity to PARP Inhibitors. Mol Cell 41:210–220. https://doi.org/10.1016/j.molcel.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  91. Shi R, Wu P, Liu M, et al (2020) <p>Knockdown of lncRNA <em>PCAT6</em> Enhances Radiosensitivity in Triple-Negative Breast Cancer Cells by Regulating<em> miR-185–5p</em>/<em>TPD52</em> Axis</p>. In: OncoTargets and Therapy. https://www.dovepress.com/knockdown-of-lncrna-pcat6-enhances-radiosensitivity-in-triple-negative-peer-reviewed-article-OTT. Accessed 3 Feb 2021

  92. Liu L, Zhu Y, Liu A-M et al (2019) Long noncoding RNA LINC00511 involves in breast cancer recurrence and radioresistance by regulating STXBP4 expression via miR-185. Eur Rev Med Pharmacol Sci 23:7457–7468. https://doi.org/10.26355/eurrev_201909_18855

    Article  CAS  PubMed  Google Scholar 

  93. Hu X, Ding D, Zhang J, Cui J (2019) Knockdown of lncRNA HOTAIR sensitizes breast cancer cells to ionizing radiation through activating miR-218. Biosci Rep. https://doi.org/10.1042/BSR20181038

  94. Fabris L, Berton S, Citron F et al (2016) Radiotherapy-induced miR-223 prevents relapse of breast cancer by targeting the EGF pathway. Oncogene 35:4914–4926. https://doi.org/10.1038/onc.2016.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang S, Wang B, Xiao H et al (2020) LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thoracic Cancer 11:1801–1816. https://doi.org/10.1111/1759-7714.13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang X, Taeb S, Jahangiri S et al (2015) miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget 6:22439–22451. https://doi.org/10.18632/oncotarget.4210

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yang B, Kuai F, Chen Z et al (2020) miR-634 decreases the radioresistance of human breast cancer cells by targeting STAT3. Cancer Biother Radiopharm 35:241–248. https://doi.org/10.1089/cbr.2019.3220

    Article  CAS  PubMed  Google Scholar 

  98. Bakhtari N, Mozdarani H, Salimi M, Omranipour R (2021) Association study of miR-22 and miR-335 expression levels and G2 assay related inherent radiosensitivity in peripheral blood of ductal carcinoma breast cancer patients. Neoplasma 68:190–199. https://doi.org/10.4149/neo_2020_200225N185

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Myrna Perlmutter for her checking in English writing.

Funding

INCa (PROUST Project).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yazid Belkacemi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

To, N.H., Nguyen, H.Q., Thiolat, A. et al. Radiation therapy for triple-negative breast cancer: emerging role of microRNAs as biomarkers and radiosensitivity modifiers. A systematic review. Breast Cancer Res Treat 193, 265–279 (2022). https://doi.org/10.1007/s10549-022-06533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06533-3

Keywords

Navigation