Skip to main content

Advertisement

Log in

Racial differences in breast cancer outcomes by hepatocyte growth factor pathway expression

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Black women have a 40% increased risk of breast cancer-related mortality. These outcome disparities may reflect differences in tumor pathways and a lack of targetable therapies for specific subtypes that are more common in Black women. Hepatocyte growth factor (HGF) is a targetable pathway that promotes breast cancer tumorigenesis, is associated with basal-like breast cancer, and is differentially expressed by race. This study assessed whether a 38-gene HGF expression signature is associated with recurrence and survival in Black and non-Black women.

Methods

Study participants included 1957 invasive breast cancer cases from the Carolina Breast Cancer Study. The HGF signature was evaluated in association with recurrence (n = 1251, 171 recurrences), overall, and breast cancer-specific mortality (n = 706, 190/328 breast cancer/overall deaths) using Cox proportional hazard models.

Results

Women with HGF-positive tumors had higher recurrence rates [HR 1.88, 95% CI (1.19, 2.98)], breast cancer-specific mortality [HR 1.90, 95% CI (1.26, 2.85)], and overall mortality [HR 1.69; 95% CI (1.17, 2.43)]. Among Black women, HGF positivity was significantly associated with higher 5-year rate of recurrence [HR 1.73; 95% CI (1.01, 2.99)], but this association was not significant in non-Black women [HR 1.68; 95% CI (0.72, 3.90)]. Among Black women, HGF-positive tumors had elevated breast cancer-specific mortality [HR 1.80, 95% CI (1.05, 3.09)], which was not significant in non-Black women [HR 1.52; 95% CI (0.78, 2.99)].

Conclusion

This multi-gene HGF signature is a poor-prognosis feature for breast cancer and may identify patients who could benefit from HGF-targeted treatments, an unmet need for Black and triple-negative patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request. The code in this study is available from the corresponding author upon reasonable request.

References

  1. American Cancer Society (2019) Breast cancer facts & figures 2019–2020. American Cancer Society, USA, pp 1–44

    Google Scholar 

  2. Benefield HC, Allott EH, Reeder-Hayes KE, Perou CM, Carey LA, Geradts J et al (2019) Borderline estrogen receptor-positive breast cancers in Black and White women. JNCI 112:728–736

    Article  PubMed Central  Google Scholar 

  3. Collin LJ, Yan M, Jiang R, Ward KC, Crawford B, Torres MA et al (2019) Oncotype DX recurrence score implications for disparities in chemotherapy and breast cancer mortality in Georgia. NPJ Breast Cancer 26:1–7

    Google Scholar 

  4. Pastoriza JM, Karagiannis GS, Lin J, Lanjewar S, Entenberg D, Condeelis JS et al (2018) Black race and distant recurrence after neoadjuvant or adjuvant chemotherapy in breast cancer. Clin Exp Metastasis 35:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kabat GC, Ginsberg M, Sparano JA, Rohan TE (2017) Risk of recurrence and mortality in a multi-ethnic breast cancer population. J Racial Ethn Health Disparities 4:1181–1188

    Article  PubMed  Google Scholar 

  6. Newman LA, Griffith KA, Jatoi I, Simon MS, Crowe JP, Colditz GA (2006) Meta-analysis of survival in African American and White American patients with breast cancer: ethnicity compared with socioeconomic status. J Clin Oncol 24:1342–1349

    Article  PubMed  Google Scholar 

  7. Troester MA, Sun X, Allott EH, Geradts J, Cohen SM, Tse CK et al (2017) Racial differences in PAM50 subtypes in the Carolina Breast Cancer Study. J Natl Cancer Inst 110(2):176–182

    Article  PubMed Central  Google Scholar 

  8. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V et al (2011) Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern Pathol 24:157–167

    Article  Google Scholar 

  9. Costa R, Shah AN, Santa-Maria CA, Cruz MR, Mahalingam D, Carneiro BA et al (2017) Targeting epidermal growth factor receptor in triple negative breast cancer: new discoveries and practical insights for drug development. Cancer Treat Rev 53:111–119

    Article  CAS  PubMed  Google Scholar 

  10. Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S et al (2019) Molecular targeting therapy against EGFR family in breast cancer: progress and future potentials. Cancers 11:1826

    Article  CAS  PubMed Central  Google Scholar 

  11. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334

    Article  CAS  PubMed  Google Scholar 

  12. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K et al (2005) c-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int J Cancer 113:678–682

    Article  CAS  PubMed  Google Scholar 

  13. Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB et al (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63:1101–1105

    CAS  PubMed  Google Scholar 

  14. Graveel CR, DeGroot JD, Su Y, Koeman J, Dykema K, Leung S et al (2009) Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci USA 106:12909–12914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ho-Yen CM, Green AR, Rakha EA, Brentnall AR, Ellis IO, Kermorgant S et al (2014) C-Met in invasive breast cancer: is there a relationship with the basal-like subtype? Cancer 120:163–171

    Article  CAS  PubMed  Google Scholar 

  16. Gastaldi S, Comoglio PM, Trusolino L (2010) The Met oncogene and basal-like breast cancer: another culprit to watch out for? Breast Cancer Res 12:1–10

    Article  Google Scholar 

  17. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adélaïde J, Cervera N et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25:2273–2284

    Article  CAS  PubMed  Google Scholar 

  18. Garcia S, Dalès JP, Charafe-Jauffret E, Carpentier-Meunier S, Andrac-Meyer L, Jacquemier J et al (2007) Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum Pathol 38:830–841

    Article  CAS  PubMed  Google Scholar 

  19. Casbas-Hernandez P, Troester MA, Perez ER, Sandhu R, Kirk E, D’arcy M et al (2012) Role of HGF in epithelial-stromal cell interactions during progression from benign breast disease to ductal carcinoma in situ. Cancer Res 72(5):LB501

    Article  Google Scholar 

  20. Oliveres H, Pineda E, Maurel J (2020) MET inhibitors in cancer: pitfalls and challenges. Expert Opin Invest Drugs 29:73–85

    Article  CAS  Google Scholar 

  21. Parikh RA, Wang P, Beumer JH, Chu E, Appleman LJ (2014) The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. OncoTargets Ther 7:969

    Google Scholar 

  22. Newman B, Moorman PG, Millikan R, Qaqish BF, Geradts J, Aldrich TE et al (1995) The Carolina Breast Cancer Study: integrating population-based epidemiology and molecular biology. Breast Cancer Res Treat 35(1):51–60

    Article  CAS  PubMed  Google Scholar 

  23. Emerson MA, Golightly YM, Tan X, Aiello AE, Reeder-Hayes KE, Olshan AF et al (2020) Integrating access to care and tumor patterns by race and age in the Carolina Breast Cancer Study, 2008–2013. Cancer Causes Control 31:221–230

    Article  PubMed  PubMed Central  Google Scholar 

  24. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jones GS, Hoadley KA, Olsson LT, Hamilton AM, Bhattacharya A, Kirk EL et al (2021) Hepatocyte growth factor pathway expression in breast cancer by race and subtype. Breast Cancer Res 23(1):80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bhattacharya A, Hamilton AM, Furberg H, Pietzak E, Purdue MP, Troester MA et al (2020) An approach for normalization and quality control for NanoString RNA expression data. bioRxiv 22:bbaa163

    Google Scholar 

  27. Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32:896–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM et al (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93(4):387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Altman DG, McShane LM, Sauerbrei W, Taube SE (2012) Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. PLoS Med 9(5):e1001216

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ et al (2007) Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. Ann Intern Med 147(8):W163–W194

    Article  Google Scholar 

  31. Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN et al (2012) cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res 18:2269–2277

    Article  CAS  PubMed  Google Scholar 

  32. Yan S, Jiao X, Zou H, Li K (2015) Prognostic significance of c-Met in breast cancer: a meta-analysis of 6010 cases. Diagn Pathol 10:1–10

    Article  Google Scholar 

  33. Zhao X, Qu J, Hui Y, Zhang H, Sun Y, Liu X et al (2017) Clinicopathological and prognostic significance of c-Met overexpression in breast cancer. Oncotarget 8:56758

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qiu SQ, van Rooijen J, Nienhuis HH, van der Vegt B, Timmer-Bosscha H, van Leeuwen-Stok E et al (2020) High hepatocyte growth factor expression in primary tumor predicts better overall survival in male breast cancer. Breast Cancer Res 22:1–10

    Article  Google Scholar 

  35. Gucalp A, Traina TA, Eisner JR, Parker JS, Selitsky SR, Park BH et al (2019) Male breast cancer: a disease distinct from female breast cancer. Breast Cancer Res Treat 173:37–48

    Article  PubMed  Google Scholar 

  36. Huang X, Li E, Shen H, Wang X, Tang T, Zhang X et al (2020) Targeting the HGF/MET axis in cancer therapy: challenges in resistance and opportunities for improvement. Front Cell Dev Biol 8:152

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dua R, Zhang J, Parry G, Penuel E (2011) Detection of hepatocyte growth factor (HGF) ligand-c-MET receptor activation in formalin-fixed paraffin embedded specimens by a novel proximity assay. PLoS One 6:e15932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma J, DeFrances MC, Zou C, Johnson C, Ferrell R, Zarnegar R (2009) Somatic mutation and functional polymorphism of a novel regulatory element in the HGF gene promoter causes its aberrant expression in human breast cancer. J Clin Invest 119(3):478–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huo D, Hu H, Rhie SK, Gamazon ER, Cherniack AD, Liu J et al (2017) Comparison of breast cancer molecular features and survival by African and European ancestry in the cancer genome Atlas. JAMA Oncol 3(12):1654–1662

    Article  PubMed  PubMed Central  Google Scholar 

  40. Parr C, Watkins G, Mansel RE, Jiang WG (2004) The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 10:202–211

    Article  CAS  PubMed  Google Scholar 

  41. Haslam SZ, Woodward TL (2003) Host microenvironment in breast cancer development: epithelial-cell–stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res 5:1–8

    Article  Google Scholar 

  42. Owusu BY, Galemmo R, Janetka J, Klampfer L (2017) Hepatocyte growth factor, a key tumor-promoting factor in the tumor microenvironment. Cancers 9:35

    Article  PubMed Central  Google Scholar 

  43. Spina A, De Pasquale V, Cerulo G, Cocchiaro P, Della Morte R, Avallone L et al (2015) HGF/c-MET axis in tumor microenvironment and metastasis formation. Biomedicines 3(1):71–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge and thank all the patients and families of the Carolina Breast Cancer Study for their contributions to this work. We are indebted for their participation in bringing this study into fruition.

Funding

Gieira Jones was supported by the UNC Lineberger Cancer Control Education Program (T32CA057726). This research was supported by a Grant from UNC Lineberger Comprehensive Cancer Center, which is funded by the University Cancer Research Fund of North Carolina, the Susan B Komen Foundation (OGUNC1202), the National Cancer Institute of the National Institutes of Health (P01CA151135), the National Cancer Institute (U54 CA156733), and the National Cancer Institute Specialized Program of Research Excellence (SPORE) in Breast Cancer (NIH/NCI P50-CA58223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Troester.

Ethics declarations

Conflict of interest

The University of North Carolina is an interest owner in University Genomics, the patent holder of the PAM50 assay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, G.S., Hoadley, K.A., Benefield, H. et al. Racial differences in breast cancer outcomes by hepatocyte growth factor pathway expression. Breast Cancer Res Treat 192, 447–455 (2022). https://doi.org/10.1007/s10549-021-06497-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06497-w

Keywords

Navigation