Skip to main content

Advertisement

Log in

Comprehensive immunohistochemical analysis of RET, BCAR1, and BCAR3 expression in patients with Luminal A and B breast cancer subtypes

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer (BC) is considered a heterogeneous disease composed of distinct subtypes with diverse clinical outcomes. Luminal subtype tumors have the best prognosis, and patients benefit from endocrine therapy. However, resistance to endocrine therapies in BC is an obstacle to successful treatment, and novel biomarkers are needed to understand and overcome this mechanism. The RET, BCAR1, and BCAR3 genes may be associated with BC progression and endocrine resistance.

Methods

Aiming to evaluate the expression profile and prognostic value of RET, BCAR1, and BCAR3, we performed immunohistochemistry on tissue microarrays (TMAs) containing a cohort of 361 Luminal subtype BC.

Results

Low expression levels of these three proteins were predominantly observed. BCAR1 expression was correlated with nuclear grade (p = 0.057), and BCAR3 expression was correlated with lymph node status (p = 0.011) and response to hormonal therapy (p = 0.021). Further, low expression of either BCAR1 or BCAR3 was significantly associated with poor prognosis (p = 0.005; p = 0.042). Pairwise analysis showed that patients with tumors with low BCAR1/low BCAR3 expression had a poorer overall survival (p = 0.013), and the low BCAR3 expression had the worst prognosis with RET high expression stratifying these patients into two different groups. Regarding the response to hormonal therapy, non-responder patients presented lower expression of RET in comparison to the responder group (p = 0.035). Additionally, the low BCAR1 expression patients had poorer outcomes than BCAR1 high (p = 0.015).

Conclusion

Our findings suggest RET, BCAR1, and BCAR3 as potential candidate markers for endocrine therapy resistance in Luminal BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beca F, Polyak K (2016) Intratumor heterogeneity in breast cancer. Adv Exp Med Biol 882:169–189. https://doi.org/10.1007/978-3-319-22909-6_7

    Article  CAS  PubMed  Google Scholar 

  2. Braunstein LZ, Taghian AG (2016) Molecular phenotype, multigene assays, and the locoregional management of breast cancer. Semin Radiat Oncol 26:9–16. https://doi.org/10.1016/j.semradonc.2015.08.002

    Article  PubMed  Google Scholar 

  3. Mulligan LM (2014) RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 14:173–186. https://doi.org/10.1038/nrc3680

    Article  CAS  PubMed  Google Scholar 

  4. Plaza-Menacho I, Mologni L, McDonald NQ (2014) Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal 26:1743–1752. https://doi.org/10.1016/j.cellsig.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  5. Boulay A, Breuleux M, Stephan C, Fux C, Brisken C, Fiche M, Wartmann M, Stumm M, Lane HA, Hynes NE (2008) The Ret receptor tyrosine kinase pathway functionally interacts with the ERalpha pathway in breast cancer. Cancer Res 68:3743–3751. https://doi.org/10.1158/0008-5472.CAN-07-5100

    Article  CAS  PubMed  Google Scholar 

  6. Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, Isacke CM (2007) A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res 67:11732–11741. https://doi.org/10.1158/0008-5472.CAN-07-2343

    Article  CAS  PubMed  Google Scholar 

  7. Gattelli A, Nalvarte I, Boulay A, Roloff TC, Schreiber M, Carragher N, Macleod KK, Schlederer M, Lienhard S, Kenner L et al (2013) Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells. EMBO Mol Med 5:1335–1350. https://doi.org/10.1002/emmm.201302625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morandi A, Martin LA, Gao Q, Pancholi S, Mackay A, Robertson D, Zvelebil M, Dowsett M, Plaza-Menacho I, Isacke CM (2013) GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer Res 73:3783–3795. https://doi.org/10.1158/0008-5472.CAN-12-4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plaza-Menacho I, Morandi A, Robertson D, Pancholi S, Drury S, Dowsett M, Martin LA, Isacke CM (2010) Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene 29:4648–4657. https://doi.org/10.1038/onc.2010.209

    Article  CAS  PubMed  Google Scholar 

  10. Gattelli A, Hynes NE, Schor IE, Vallone SA (2020) Ret receptor has distinct alterations and functions in breast cancer. J Mammary Gland Biol Neoplasia 25:13–26. https://doi.org/10.1007/s10911-020-09445-4

    Article  PubMed  Google Scholar 

  11. Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29:217–233. https://doi.org/10.1210/er.2006-0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morandi A, Plaza-Menacho I, Isacke CM (2011) RET in breast cancer: functional and therapeutic implications. Trends Mol Med 17:149–157. https://doi.org/10.1016/j.molmed.2010.12.007

    Article  CAS  PubMed  Google Scholar 

  13. Mechera R, Soysal SD, Piscuoglio S, Ng CKY, Zeindler J, Mujagic E, Däster S, Glauser P, Hoffmann H, Kilic E et al (2019) Expression of RET is associated with Oestrogen receptor expression but lacks prognostic significance in breast cancer. BMC Cancer 19:41. https://doi.org/10.1186/s12885-018-5262-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koytiger G, Kaushansky A, Gordus A, Rush J, Sorger PK, MacBeath G (2013) Phosphotyrosine signaling proteins that drive oncogenesis tend to be highly interconnected. Mol Cell Proteomics 12:1204–1213. https://doi.org/10.1074/mcp.M112.025858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cabodi S, Tinnirello A, Di Stefano P, Bisarò B, Ambrosino E, Castellano I, Sapino A, Arisio R, Cavallo F, Forni G et al (2006) p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis. Cancer Res 66:4672–4680. https://doi.org/10.1158/0008-5472.CAN-05-2909

    Article  CAS  PubMed  Google Scholar 

  16. Tikhmyanova N, Little JL, Golemis EA (2010) CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 67:1025–1048. https://doi.org/10.1007/s00018-009-0213-1

    Article  CAS  PubMed  Google Scholar 

  17. Brinkman A, van der Flier S, Kok EM, Dorssers LC (2000) BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J Natl Cancer Inst 92:112–120. https://doi.org/10.1093/jnci/92.2.112

    Article  CAS  PubMed  Google Scholar 

  18. van Agthoven T, van Agthoven TL, Dekker A, van der Spek PJ, Vreede L, Dorssers LC (1998) Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J 17:2799–2808. https://doi.org/10.1093/emboj/17.10.2799

    Article  PubMed  PubMed Central  Google Scholar 

  19. Felekkis KN, Narsimhan RP, Near R, Castro AF, Zheng Y, Quilliam LA, Lerner A (2005) AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain-dependent manner. Mol Cancer Res 3:32–41

    CAS  PubMed  Google Scholar 

  20. Schrecengost RS, Riggins RB, Thomas KS, Guerrero MS, Bouton AH (2007) Breast cancer antiestrogen resistance-3 expression regulates breast cancer cell migration through promotion of p130Cas membrane localization and membrane ruffling. Cancer Res 67:6174–6182. https://doi.org/10.1158/0008-5472.CAN-06-3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai D, Iyer A, Felekkis KN, Near RI, Luo Z, Chernoff J, Albanese C, Pestell RG, Lerner A (2003) AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res 63:6802–6808

    CAS  PubMed  Google Scholar 

  22. Cai D, Felekkis KN, Near RI, O’Neill GM, van Seventer JM, Golemis EA, Lerner A (2003) The GDP exchange factor AND-34 is expressed in B cells, associates with HEF1, and activates Cdc42. J Immunol 170:969–978. https://doi.org/10.4049/jimmunol.170.2.969

    Article  CAS  PubMed  Google Scholar 

  23. Wallez Y, Mace PD, Pasquale EB, Riedl SJ (2012) NSP-CAS protein complexes: emerging signaling modules in cancer. Genes Cancer 3:382–393. https://doi.org/10.1177/1947601912460050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cross AM, Wilson AL, Guerrero MS, Thomas KS, Bachir AI, Kubow KE, Horwitz AR, Bouton AH (2016) Breast cancer antiestrogen resistance 3–p130. Oncogene 35:5850–5859. https://doi.org/10.1038/onc.2016.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Agthoven T, Godinho MF, Wulfkuhle JD, Petricoin EF, Dorssers LC (2012) Protein pathway activation mapping reveals molecular networks associated with antiestrogen resistance in breast cancer cell lines. Int J Cancer 131:1998–2007. https://doi.org/10.1002/ijc.27489

    Article  CAS  PubMed  Google Scholar 

  26. Nagai MA, Gerhard R, Fregnani JH, Nonogaki S, Rierger RB, Netto MM, Soares FA (2011) Prognostic value of NDRG1 and SPARC protein expression in breast cancer patients. Breast Cancer Res Treat 126:1–14. https://doi.org/10.1007/s10549-010-0867-2

    Article  CAS  PubMed  Google Scholar 

  27. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG et al (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7:16878. https://doi.org/10.1038/s41598-017-17204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, Sander C, Schultz N (2013) The molecular diversity of Luminal A breast tumors. Breast Cancer Res Treat 141:409–420. https://doi.org/10.1007/s10549-013-2699-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brufsky AM, Dickler MN (2018) Estrogen receptor-positive breast cancer: exploiting signaling pathways implicated in endocrine resistance. Oncologist 23:528–539. https://doi.org/10.1634/theoncologist.2017-0423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clarke R, Tyson JJ, Dixon JM (2015) Endocrine resistance in breast cancer–an overview and update. Mol Cell Endocrinol 418(Pt 3):220–234. https://doi.org/10.1016/j.mce.2015.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spanheimer PM, Park JM, Askeland RW, Kulak MV, Woodfield GW, De Andrade JP, Cyr AR, Sugg SL, Thomas A, Weigel RJ (2014) Inhibition of RET increases the efficacy of antiestrogen and is a novel treatment strategy for luminal breast cancer. Clin Cancer Res 20:2115–2125. https://doi.org/10.1158/1078-0432.CCR-13-2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. AlFakeeh A, Brezden-Masley C (2018) Overcoming endocrine resistance in hormone receptor-positive breast cancer. Curr Oncol 25:S18–S27. https://doi.org/10.3747/co.25.3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Drilon A, Hu ZI, Lai GGY, Tan DSW (2018) Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 15:150. https://doi.org/10.1038/nrclinonc.2017.188

    Article  PubMed  Google Scholar 

  34. Lo Nigro C, Rusmini M, Ceccherini I (2019) RET in breast cancer: pathogenic implications and mechanisms of drug resistance. Cancer Drug Resistance 2:1136–1152. https://doi.org/10.20517/cdr.2019.66

    Article  Google Scholar 

  35. Near RI, Zhang Y, Makkinje A, Vanden Borre P, Lerner A (2007) AND-34/BCAR3 differs from other NSP homologs in induction of anti-estrogen resistance, cyclin D1 promoter activation and altered breast cancer cell morphology. J Cell Physiol 212:655–665. https://doi.org/10.1002/jcp.21059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson AL, Schrecengost RS, Guerrero MS, Thomas KS, Bouton AH (2013) Breast cancer antiestrogen resistance 3 (BCAR3) promotes cell motility by regulating actin cytoskeletal and adhesion remodeling in invasive breast cancer cells. PLoS One 8:e65678. https://doi.org/10.1371/journal.pone.0065678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo J, Canaff L, Rajadurai CV, Fils-Aimé N, Tian J, Dai M, Korah J, Villatoro M, Park M, Ali S et al (2014) Breast cancer anti-estrogen resistance 3 inhibits transforming growth factor β/Smad signaling and associates with favorable breast cancer disease outcomes. Breast Cancer Res 16:476. https://doi.org/10.1186/s13058-014-0476-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Agthoven T, Sieuwerts AM, Meijer-van Gelder ME, Look MP, Smid M, Veldscholte J, Sleijfer S, Foekens JA, Dorssers LC (2009) Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J Clin Oncol 27:542–549. https://doi.org/10.1200/JCO.2008.17.1462

    Article  PubMed  Google Scholar 

  39. Sieuwerts AM, Lyng MB, Meijer-van Gelder ME, de Weerd V, Sweep FC, Foekens JA, Span PN, Martens JW, Ditzel HJ (2014) Evaluation of the ability of adjuvant tamoxifen-benefit gene signatures to predict outcome of hormone-naive estrogen receptor-positive breast cancer patients treated with tamoxifen in the advanced setting. Mol Oncol 8:1679–1689. https://doi.org/10.1016/j.molonc.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tornillo G, Elia AR, Castellano I, Spadaro M, Bernabei P, Bisaro B, Camacho-Leal MeP, Pincini A, Provero P, Sapino A, et al (2013) p130Cas alters the differentiation potential of mammary luminal progenitors by deregulating c-Kit activity. Stem Cells 31: 1422–1433. https://doi.org/10.1002/stem.1403.

  41. Tornillo G, Defilippi P, Cabodi S (2014) Cas proteins: dodgy scaffolding in breast cancer. Breast Cancer Res 16:443. https://doi.org/10.1186/s13058-014-0443-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van der Flier S, Brinkman A, Look MP, Kok EM, Meijer-van Gelder ME, Klijn JG, Dorssers LC, Foekens JA (2000) Bcar1/p130Cas protein and primary breast cancer: prognosis and response to tamoxifen treatment. J Natl Cancer Inst 92:120–127. https://doi.org/10.1093/jnci/92.2.120

    Article  PubMed  Google Scholar 

  43. Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F (2020) State-of-the-art strategies for targeting. J Clin Oncol 38:1209–1221. https://doi.org/10.1200/JCO.19.02551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Fundação de Amparo a Pesquisa do Estadode São Paulo (FAPESP; 2019/05252-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; 309524/2017-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aparecida Nagai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and was approved by the Institutional Review Boards of the Medical School University of São Paulo, São Paulo, Brasil (CAAE: 35295514.1.0000.0065).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10549_2021_6452_MOESM1_ESM.tiff

Supplementary file1—Supplementary Figure 1 - Kaplan-Meier curves of disease-free survival in Luminal breast cancer patients stratified according to RET (a), BCAR1 (b), and BCAR3 (c) protein expression. Tumors were classified as low (negative or weak) or high (moderate or intense) according to RET, BCAR1, or BCAR3 protein immunostaining. Log-rank test was performed for curve comparisons. HR - hazard ratio. (TIFF 109 kb)

10549_2021_6452_MOESM2_ESM.tiff

Supplementary file2—Supplementary Figure 2 - Prognostic association of the pairwise combinations of RET, BCAR1 and BCAR3 expression. Kaplan-Meier curves of disease-free survival in luminal breast cancer patients stratified according to the combination of RET and BCAR3 (a), RET and BCAR1 (b) and, BCAR3 and BCAR1 (c) protein expression. Tumors were classified as low (negative or weak) or high (moderate or intense) according to RET, BCAR3, or BCAR1 protein immunostaining. Log-rank test was performed for curve comparisons. NA – not analyzed because 100% of the cases was censored cases. HR -hazard ratio. (TIFF 331 kb)

10549_2021_6452_MOESM3_ESM.tiff

Supplementary file3—Supplementary Figure 3 - Prognostic association between RET, BCAR1, and BCAR3 expression and response to endocrine therapy. Kaplan-Meier curves of disease-free survival in Luminal breast cancer patients stratified according to RET (a), BCAR1 (b), and BCAR3 (c) protein expression in combination with response to endocrine therapy. Tumors were classified as low (negative or weak) or high (moderate or intense) according to RET, BCAR1, or BCAR3 protein immunostaining and response to hormonal therapy was considered as absence of disease recurrence. Log-rank test was performed for curve comparisons. The p-values obtained for comparison between responder and/or non responder curves are presented inside the figures. NA – not analyzed because 100% of the cases was censored cases. HR - Hazard ratio. (TIFF 127 kb)

Supplementary file4 (DOCX 17 kb)

Supplementary file5 (DOCX 18 kb)

Supplementary file6 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavanelli, A.C., Mangone, F.R., Yoganathan, P. et al. Comprehensive immunohistochemical analysis of RET, BCAR1, and BCAR3 expression in patients with Luminal A and B breast cancer subtypes. Breast Cancer Res Treat 192, 43–52 (2022). https://doi.org/10.1007/s10549-021-06452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06452-9

Keywords

Navigation