Skip to main content


Log in

Updated efficacy of adjuvant epirubicin plus cyclophosphamide followed by taxanes versus carboplatin plus taxanes in early triple-negative breast cancer in phase 2 trial: 8.1-year median follow-up

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript



Paclitaxel/docetaxel after doxorubicin plus cyclophosphamide (ECT) is considered as an adjuvant chemotherapy and improves the survival of early triple-negative breast cancer (TNBC) patients. We aim to assess whether carboplatin plus taxanes (TP) is non-inferior to ECT in prolonging the survival time.


TNBC patients were randomized (1:1) to receive ECT (90 mg/m2 epirubicin + 600 mg/m2 cyclophosphamide followed by 75 mg/m2 docetaxel or 175 mg/m2 paclitaxel every 3 weeks, n = 154) or TP (75 mg/m2 docetaxel or 175 mg/m2 paclitaxel + carboplatin AUC 5 every 3 weeks, n = 154). These expression of SPARC, PD-L1, and BRCA were studied. Patients were followed up for disease-free survival (DFS), overall survival (OS), and safety.


We recruited 308 TNBC patients (median follow-up of 97.6 months). The median DFS and OS were not reached; the 8-year DFS rate of ECT and TP arms was 78.4% and 81.7%, respectively, while the 8-year OS rate were 87.2% and 89.1%, respectively. In the SPARC (> 50%) subgroup analysis, the TP arm had longer DFS (P = 0.049) and a tendency with better OS (P = 0.06) than ECT arm. No significant differences were observed in the DFS and OS between the ECT arm and TP arm in TNBC with SPARC (≤ 50%), PD-L1 (−) PD-L1 (+), and BRCA mutation or BRCA wild (all P values > 0.05).


TP showed non-inferiority for DFS and OS compared with ECT in early TNBC. TP may be an effective alternative chemotherapy for TNBC patients whom the standard ECT regimen is not being used.

Trail Registration identifier NCT01150513

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analyzed during the present study are not publicly available due to its scope but are available from the corresponding author on reasonable request.


  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin.

    Article  Google Scholar 

  2. Clarke CA, Keegan TH, Yang J, Press DJ, Kurian AW, Patel AH et al (2012) Age-specific incidence of breast cancer subtypes: understanding the black-white crossover. J Natl Cancer Inst 104(14):1094–1101.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Caparica R, Lambertini M, de Azambuja E (2019) How I treat metastatic triple-negative breast cancer. ESMO Open 4(Suppl 2):e000504.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mamounas EP, Bryant J, Lembersky B, Fehrenbacher L, Sedlacek SM, Fisher B et al (2005) Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol 23(16):3686–3696.

    Article  CAS  PubMed  Google Scholar 

  5. Sartor CI, Peterson BL, Woolf S, Fitzgerald TJ, Laurie F, Turrisi AJ et al (2005) Effect of addition of adjuvant paclitaxel on radiotherapy delivery and locoregional control of node-positive breast cancer: cancer and leukemia group B 9344. J Clin Oncol 23(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  6. Nitz U, Gluz O, Clemens M, Malter W, Reimer T, Nuding B et al (2019) West German study planB trial: adjuvant four cycles of epirubicin and cyclophosphamide plus docetaxel versus six cycles of docetaxel and cyclophosphamide in HER2-negative early breast cancer. J Clin Oncol 37(10):799–808

    Article  CAS  PubMed  Google Scholar 

  7. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229.

    Article  CAS  PubMed  Google Scholar 

  8. Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM et al (2015) Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage ii to iii triple-negative breast cancer: CALGB 40603 (alliance). J Clin Oncol 33(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  9. Loibl S, O’Shaughnessy J, Untch M, Sikov WM, Rugo HS, McKee MD et al (2018) Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol 19(4):497–509.

    Article  CAS  PubMed  Google Scholar 

  10. Loibl S, Weber KE, Timms KM, Elkin EP, Hahnen E, Fasching PA et al (2018) Survival analysis of carboplatin added to an anthracycline/taxane-based neoadjuvant chemotherapy and HRD score as predictor of response—final results from GeparSixto. Ann Oncol 29(12):2341–7.

    Article  CAS  PubMed  Google Scholar 

  11. Burstein HJ, Curigliano G, Loibl S, Dubsky P, Gnant M, Poortmans P et al (2019) Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen international consensus guidelines for the primary therapy of early breast cancer 2019. Ann Oncol 30(10):1541–57.

    Article  CAS  PubMed  Google Scholar 

  12. Du F, Wang W, Wang Y, Li M, Zhu A, Wang J et al (2020) Carboplatin plus taxanes are non-inferior to epirubicin plus cyclophosphamide followed by taxanes as adjuvant chemotherapy for early triple-negative breast cancer. Breast Cancer Res Treat 182(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  13. Yu K-D, Ye F-G, He M, Fan L, Ma D, Mo M et al (2020) Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer. JAMA Oncol.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marquard AM, Eklund AC, Joshi T, Krzystanek M, Favero F, Wang ZC et al (2015) Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs. Biomark Res 3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hahnen E, Lederer B, Hauke J, Loibl S, Krober S, Schneeweiss A et al (2017) Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the geparsixto randomized clinical trial. JAMA Oncol 3(10):1378–1385.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q et al (2010) Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lindner JL, Loibl S, Denkert C, Ataseven B, Fasching PA, Pfitzner BM et al (2015) Expression of secreted protein acidic and rich in cysteine (SPARC) in breast cancer and response to neoadjuvant chemotherapy. Ann Oncol 26(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  18. Nagai MA, Gerhard R, Fregnani JH, Nonogaki S, Rierger RB, Netto MM et al (2011) Prognostic value of NDRG1 and SPARC protein expression in breast cancer patients. Breast Cancer Res Treat 126(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu A, Yuan P, Du F, Hong R, Ding X, Shi X et al (2016) SPARC overexpression in primary tumors correlates with disease recurrence and overall survival in patients with triple negative breast cancer. Oncotarget 22(7):76628–34

    Article  Google Scholar 

  20. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19(1):40–50.

    Article  PubMed  Google Scholar 

  21. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M et al (2018) Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 37(7):559–69.

    Article  Google Scholar 

  22. Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 4:59.

    Article  PubMed  PubMed Central  Google Scholar 

  23. AiErken N, Shi H-j, Zhou Y, Shao N, Zhang J, Shi Y et al (2017) High PD-L1 expression is closely associated with tumor-infiltrating lymphocytes and leads to good clinical outcomes in Chinese triple negative breast cancer patients. Int J Biol Sci 13(9):1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J (2021) New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis. Cancers (Basel).

    Article  Google Scholar 

  25. Jones CE, Sharick JT, Colbert SE, Shukla VC, Zent JM, Ostrowski MC et al (2021) Pten regulates collagen fibrillogenesis by fibroblasts through SPARC. PLoS ONE 16(2):e0245653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim H, Kim HS, Moon WK (2019) Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol 385:114814.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Lin Y, Sun XJ, Wang BY, Wang ZH, Luo JF et al (2018) Biomarker assessment of the CBCSG006 trial: a randomized phase III trial of cisplatin plus gemcitabine compared with paclitaxel plus gemcitabine as first-line therapy for patients with metastatic triple-negative breast cancer. Ann Oncol 29(8):1741–7.

    Article  CAS  PubMed  Google Scholar 

  28. Solinas C, Marcoux D, Garaud S, Vitória JR, Van den Eynden G, de Wind A et al (2019) BRCA gene mutations do not shape the extent and organization of tumor infiltrating lymphocytes in triple negative breast cancer. Cancer Lett 450:88–97.

    Article  CAS  PubMed  Google Scholar 

Download references


We would like to thank all patients and their families, the study investigators and their staff, and the ethics committees of the participating hospitals.


This work was supported by the National Key R&D Program of China (2018YFC0115204), CSCO Pilot Oncology Research Fund (Y-2019AZMS-0377), Capital Health Development Research Project (2018-2-4023), and Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences Clinical and Translational Medicine Research Fund (12019XK320071).

Author information

Authors and Affiliations



Conception and design: PY, FZ, and FD. Acquisition and analysis of data: FZ, FD, and PY. Provided the clinical data: BX, PY, WW, YW, ML, JW, RC, FM, YF, QL, and PZ. Writing, review, and/or revision of the manuscript: FZ, FD, YW, JZ, ZY, XW, JY, JW, and PY. Study supervision: PY and BX.

Corresponding authors

Correspondence to Binghe Xu or Peng Yuan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study was carried out in accordance with the Declaration of Helsinki.

Consent to participate

Good Clinical Practice Guidelines and was also approved by the ethics committees of the participating hospitals.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.


Supplementary file1 (PDF 509 KB) The restricted mean survival time (RMST) of ECT arm and TP arm in 60 months (a), 96 months (b), and 120 months (c). TP, taxanes plus carboplatin; ECT, epirubicin and cyclophosphamide followed by docetaxel or paclitaxel.


Supplementary file2 (PDF 25 KB) Kaplan–Meier plots showing the (a) DFS and (b) OS rates of PD-L1 (+) TNBC patients. Kaplan–Meier plots showing (c) DFS and (d) OS rates of PD-L1(-) TNBC patients. TNBC, triple-negative breast cancer; PD-L1, programmed cell death ligand 1; DFS, disease-free survival; OS, overall survival.


Supplementary file3 (PDF 166 KB) Kaplan–Meier plots showing the (a) DFS and (b) OS rates of TNBC patients with BRCA mutation or BRCA wild. DFS, disease-free survival; OS, overall survival.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Du, F., Wang, W. et al. Updated efficacy of adjuvant epirubicin plus cyclophosphamide followed by taxanes versus carboplatin plus taxanes in early triple-negative breast cancer in phase 2 trial: 8.1-year median follow-up. Breast Cancer Res Treat 191, 97–105 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: