Skip to main content

Advertisement

Log in

Classes of therapeutics to amplify the immune response

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Conventional chemotherapies are a mainstay for metastatic breast cancers, though durable response is rare. Immunotherapies promise long-term responses thorough immune activation but have been underwhelming in breast cancer relative to other cancer types. Here, we review the mechanisms of existing strategies including chemotherapies and how they may cause breast cancers to become immunogenic to identify potential biomarkers for combinations of conventional and immunotherapies.

Conclusion

Mechanistic considerations should inform biomarker development and patient selection for therapeutic combinations of drugs to combine with immune-checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians [Internet]. 2020 [cited 2021 Feb 19]; Available from Doi: https://doi.org/10.3322/caac.21660

  2. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321:288–300

    CAS  PubMed  Google Scholar 

  3. Chen M-T, Sun H-F, Zhao Y, Fu W-Y, Yang L-P, Gao S-P, et al. 2017 Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: a SEER population-based analysis. Scientific Reports. Nature Publishing Group 7: e9254

  4. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res Am Association for Cancer Res 13:4429–4434

    Google Scholar 

  5. Emens LA (2018) Breast cancer immunotherapy: facts and hopes. Clin Cancer Res Am Association Cancer Res 24:511–520

    CAS  Google Scholar 

  6. Adams S, Loi S, Toppmeyer D, Cescon DW, De Laurentiis M, Nanda R et al (2019) Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol 30:405–411

    CAS  PubMed  Google Scholar 

  7. Tokumaru Y, Joyce D, Takabe K (2020) Current status and limitations of immunotherapy for breast cancer. Surgery Elsevier 167:628–630

    Google Scholar 

  8. Heinhuis KM, Ros W, Kok M, Steeghs N, Beijnen JH, Schellens JHM (2019) Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Annals of Oncology Elsevier 30:219–235

    CAS  Google Scholar 

  9. Nanda R, Liu MC, Yau C, Shatsky R, Pusztai L, Wallace A et al (2020) Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol 6:676–684

    PubMed  Google Scholar 

  10. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121

    CAS  PubMed  Google Scholar 

  11. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im S-A, Yusof MM et al (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. The Lancet Elsevier 396:1817–1828

    Google Scholar 

  12. Emens LA, Middleton G (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 3:436–443

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Houssami N, Macaskill P, von Minckwitz G, Marinovich ML, Mamounas E (2012) Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer 48:3342–3354

    CAS  PubMed  Google Scholar 

  14. Miles D. Primary results from IMpassion131, a double-blind placebo-controlled randomized phase III trial of first-line paclitaxel atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. ESMO Virtual Congress 2020 Abstract LBA15. 2020.

  15. Mavratzas A, Seitz J, Smetanay K, Schneeweiss A, Jäger D, Fremd C (2020) Atezolizumab for use in PD-L1-positive unresectable, locally advanced or metastatic triple-negative breast cancer. Future Oncol 16:4439–4453

    CAS  PubMed  Google Scholar 

  16. Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L (2019) Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol 20:e175–e186

    CAS  PubMed  Google Scholar 

  17. Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21:15–25

    CAS  PubMed  Google Scholar 

  18. Opzoomer JW, Sosnowska D, Anstee JE, Spicer JF, Arnold JN (2019) Cytotoxic chemotherapy as an immune stimulus: a molecular perspective on turning up the immunological heat on cancer. Front Immunol 10:1654

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Margolis SR, Wilson SC, Vance RE (2017) Evolutionary origins of cGAS-STING signaling. Trends Immunol 38:733–743

    CAS  PubMed  Google Scholar 

  20. Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791

    CAS  PubMed  Google Scholar 

  21. Vance RE, Cytosolic DNA (2016) Sensing: the field narrows. Immunity 45:227–228

    CAS  PubMed  Google Scholar 

  22. Wu J, Sun L, Chen X, Du F, Shi H, Chen C et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830

    CAS  PubMed  Google Scholar 

  23. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:e2630

    Google Scholar 

  24. Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–1394

    CAS  PubMed  Google Scholar 

  25. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Morimoto Y, Kishida T, Kotani S, Takayama K, Mazda O (2018) Interferon-β signal may up-regulate PD-L1 expression through IRF9-dependent and independent pathways in lung cancer cells. Biochem Biophys Res Commun 507:330–336

    CAS  PubMed  Google Scholar 

  27. Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E et al (2015) STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med 7:e283

    Google Scholar 

  28. Naour JL, Zitvogel L, Galluzzi L, Vacchelli E, Kroemer G (2020) Trial watch: STING agonists in cancer therapy. OncoImmunology 9:e1777624

    Google Scholar 

  29. Yum S, Li M, Chen ZJ (2020) Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res 30:639–648

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zierhut C, Yamaguchi N, Paredes M, Luo J-D, Carroll T, Funabiki H (2019) The cytoplasmic DNA Sensor cGAS promotes mitotic cell death. Cell 178:302-315.e23

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H et al (2020) STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nature Communications 11:e259

    Google Scholar 

  32. Shen J, Zhao W, Ju Z, Wang L, Peng Y, Labrie M et al (2019) PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res 79:311–319

    CAS  PubMed  Google Scholar 

  33. Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A, Simpson DJ et al (2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–465

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA (2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–470

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Chen J, Hu J, Zhang H, Xu F, He W et al (2019) cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity. J Clin Invest 129:4850–4862

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Carozza JA, Böhnert V, Nguyen KC, Skariah G, Shaw KE, Brown JA et al (2020) Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nat Cancer 1:184–196

    PubMed  PubMed Central  Google Scholar 

  37. Hu ZI, Ho AY, McArthur HL (2017) Combined radiation therapy and immune checkpoint blockade therapy for breast cancer. Int J Radiation Oncol Biol Phys 99:153–164

    Google Scholar 

  38. Peyraud F, Italiano A. Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors. Cancers (Basel) [Internet]. 2020 [cited 2021 Apr 12];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352466/

  39. An X, Zhu Y, Zheng T, Wang G, Zhang M, Li J et al (2019) An analysis of the expression and association with immune cell infiltration of the cGAS/STING pathway in pan-cancer. Mol Therapy - Nucleic Acids 14:80–89

    CAS  PubMed  Google Scholar 

  40. Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P et al (2020) Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death & Disease 11:1–13

    Google Scholar 

  41. Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer [Internet]. 2020 [cited 2021 Apr 15];8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064135/

  42. Hato SV, Khong A, de Vries IJM, Lesterhuis WJ (2014) Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics. Clin Cancer Res Am Association for Cancer Res 20:2831–2837

    CAS  Google Scholar 

  43. Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I et al (2015) Trial Watch: immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 4:e1008866

    PubMed  PubMed Central  Google Scholar 

  44. Ladoire S, Enot D, Andre F, Zitvogel L, Kroemer G (2016) Immunogenic cell death-related biomarkers: impact on the survival of breast cancer patients after adjuvant chemotherapy. Oncoimmunology 5:e1082706

    PubMed  Google Scholar 

  45. Rapoport BL, Anderson R. Realizing the Clinical Potential of Immunogenic Cell Death in Cancer Chemotherapy and Radiotherapy. Int J Mol Sci [Internet]. 2019 [cited 2021 Apr 15];20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412296/

  46. Aoto K, Mimura K, Okayama H, Saito M, Chida S, Noda M et al (2018) Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma. Oncol Rep 39:151–159

    CAS  PubMed  Google Scholar 

  47. Griguolo G, Pascual T, Dieci MV, Guarneri V, Prat A (2019) Interaction of host immunity with HER2-targeted treatment and tumor heterogeneity in HER2-positive breast cancer. J Immunother Cancer 7:90

    PubMed  PubMed Central  Google Scholar 

  48. Amiel E, Everts B, Freitas TC, King IL, Curtis JD, Pearce EL et al (2012) Inhibition of mTOR promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol 189:2151–2158

    CAS  PubMed  Google Scholar 

  49. Sun S-Y (2020) Searching for the real function of mTOR signaling in the regulation of PD-L1 expression. Translational Oncol 13:e100847

    Google Scholar 

  50. O’Donnell JS, Massi D, Teng MWL, Mandala M (2018) PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol 48:91–103

    PubMed  Google Scholar 

  51. Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol [Internet]. 2018 [cited 2021 Feb 18];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784573/

  52. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB et al (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471–475

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Solinas C, Aiello M, Migliori E, Willard-Gallo K, Emens LA (2020) Breast cancer vaccines: heeding the lessons of the past to guide a path forward. Cancer Treat Rev 84:e101947

    Google Scholar 

  54. Jaini R, Kesaraju P, Johnson JM, Altuntas CZ, Jane-Wit D, Tuohy VK (2010) An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nat Med 16:799–803

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalli KR, Block MS, Kasi PM, Erskine CL, Hobday TJ, Dietz A et al (2018) Folate receptor alpha peptide vaccine generates immunity in breast and ovarian cancer patients. Clin Cancer Res 24:3014–3025

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schneble EJ, Berry JS, Trappey FA, Clifton GT, Ponniah S, Mittendorf E et al (2014) The HER2 peptide nelipepimut-S (E75) vaccine (NeuVaxTM) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy 6:519–531

    CAS  PubMed  Google Scholar 

  57. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W. Biological response of cancer cells to radiation treatment. Front Mol Biosci [Internet]. 2014 [cited 2021 Apr 15];1. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429645/

  58. Stover DG, Coloff JL, Barry WT, Brugge JS, Winer EP, Selfors LM (2016) The role of proliferation in determining response to neoadjuvant chemotherapy in breast cancer: a gene expression-based meta-analysis. Clin Cancer Res Am Association for Cancer Res 22:6039–6050

    CAS  Google Scholar 

  59. Gustafson CE, Jadhav R, Cao W, Qi Q, Pegram M, Tian L, et al. Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight [Internet]. [cited 2021 Apr 15];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101137/

  60. Rotstein S, Blomgren H, Petrini B, Wasserman J, Baral E (1985) Long term effects on the immune system following local radiation therapy for breast cancer I Cellular composition of the peripheral blood lymphocyte population. Int J Radiat Oncol Biol Phys 11:921–925

    CAS  PubMed  Google Scholar 

  61. Jiang M, Gu D, Dai J, Huang Q, Tian L (2020) Dark side of cytotoxic therapy: chemoradiation-induced cell death and tumor repopulation. Trends in Cancer Elsevier 6:419–431

    CAS  Google Scholar 

  62. Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE et al (2011) Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol. https://doi.org/10.1155/2011/941876

    Article  PubMed  Google Scholar 

  63. Wang Z, Till B, Gao Q. Chemotherapeutic agent-mediated elimination of myeloid-derived suppressor cells. Oncoimmunology [Internet]. 2017 [cited 2021 Apr 15];6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543863/

  64. Sánchez-Margalet V, Barco-Sánchez A, Vilariño-García T, Jiménez-Cortegana C, Pérez-Pérez A, Henao-Carrasco F, et al. Circulating regulatory T cells from breast cancer patients in response to neoadjuvant chemotherapy. Translational Cancer Research [Internet]. AME Publishing Company; 2019 [cited 2021 Apr 15];8. Available from: https://tcr.amegroups.com/article/view/26532

  65. McDonnell AM, Lesterhuis WJ, Khong A, Nowak AK, Lake RA, Currie AJ et al (2015) Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur J Immunol 45:49–59

    CAS  PubMed  Google Scholar 

  66. Zhou F (2009) Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 28:239–260

    CAS  PubMed  Google Scholar 

  67. Lhuillier C, Rudqvist N-P, Yamazaki T, Zhang T, Charpentier M, Galluzzi L et al (2021) Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control. J Clin Invest. https://doi.org/10.1172/JCI138740

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wanderley CW, Colon DF, Luiz JPM, Oliveira FF, Viacava PR, Leite CA et al (2018) Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1- profile in a TLR4-dependent manner. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-3480

    Article  PubMed  Google Scholar 

  69. Lee WS, Yang H, Chon HJ, Kim C (2020) Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med 52:1475–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Anderson KG, Stromnes IM, Greenberg PD (2017) Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31:311–325

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Grywalska E, Pasiarski M, Góźdź S, Roliński J (2018) Immune-checkpoint inhibitors for combating T-cell dysfunction in cancer. Onco Targets Ther 11:6505–6524

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kalos M, June CH. Adoptive T cell Transfer for Cancer Immunotherapy in the Era of Synthetic Biology. Immunity [Internet]. 2013 [cited 2021 Apr 15];39. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809038/

  73. Ghiringhelli F, Bruchard M, Apetoh L. Immune effects of 5-fluorouracil. Oncoimmunology [Internet]. 2013 [cited 2021 Feb 18];2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661151/

  74. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    CAS  PubMed  Google Scholar 

  75. Wu Y, Deng Z, Wang H, Ma W, Zhou C, Zhang S (2016) Repeated cycles of 5-fluorouracil chemotherapy impaired anti-tumor functions of cytotoxic T cells in a CT26 tumor-bearing mouse model. BMC Immunol 17:29

    PubMed  PubMed Central  Google Scholar 

  76. Heinemann V (2005) Gemcitabine in metastatic breast cancer. Expert Review of Anticancer Therapy 5:429–443

    CAS  PubMed  Google Scholar 

  77. Ahlmann M, Hempel G (2016) The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol 78:661–671

    CAS  PubMed  Google Scholar 

  78. Awwad M, North RJ (1988) Cyclophosphamide (Cy)-facilitated adoptive immunotherapy of a Cy-resistant tumour Evidence that Cy permits the expression of adoptive T-cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden. Immunology 65:87–92

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Noguchi M, Moriya F, Koga N, Matsueda S, Sasada T, Yamada A et al (2016) A randomized phase II clinical trial of personalized peptide vaccination with metronomic low-dose cyclophosphamide in patients with metastatic castration-resistant prostate cancer. Cancer Immunol Immunother 65:151–160

    CAS  PubMed  Google Scholar 

  80. Hughes E, Scurr M, Campbell E, Jones E, Godkin A, Gallimore A (2018) T-cell modulation by cyclophosphamide for tumour therapy. Immunology 154:62–68

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong S-H, Yoon I-H, Kim Y-H, Yang S-H, Park M-J, Nam H-Y et al (2010) High-dose cyclophosphamide-mediated anti-tumor effects by the superior expansion of CD44high cells after their selective depletion. Immunobiology 215:182–193

    CAS  PubMed  Google Scholar 

  82. Takeuchi A, Eto M, Yamada H, Tatsugami K, Naito S, Yoshikai Y (2012) A reduction of recipient regulatory T cells by cyclophosphamide contributes to an anti-tumor effect of nonmyeloablative allogeneic stem cell transplantation in mice. Int J Cancer 130:365–376

    CAS  PubMed  Google Scholar 

  83. Liu P, Jaffar J, Hellstrom I, Hellstrom KE (2010) Administration of cyclophosphamide changes the immune profile of tumor-bearing mice. J Immunother 33:53–59

    PubMed  PubMed Central  Google Scholar 

  84. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene Nature Publishing Group 29:482–491

    CAS  Google Scholar 

  85. Venkatesh P, Kasi A. Anthracyclines. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 [cited 2021 Feb 18]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK538187/

  86. Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J et al (2011) Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 71:4821–4833

    CAS  PubMed  Google Scholar 

  87. Zhang Z, Yu X, Wang Z, Wu P, Huang J (2015) Anthracyclines potentiate anti-tumor immunity: a new opportunity for chemoimmunotherapy. Cancer Lett 369:331–335

    CAS  PubMed  Google Scholar 

  88. Imai H, Dansako H, Ueda Y, Satoh S, Kato N (2018) Daunorubicin, a topoisomerase II poison, suppresses viral production of hepatitis B virus by inducing cGAS-dependent innate immune response. Biochem Biophys Res Commun 504:672–678

    CAS  PubMed  Google Scholar 

  89. Doxorubicin Eliminates Myeloid-Derived Suppressor Cells and Enhances the Efficacy of Adoptive T-Cell Transfer in Breast Cancer | Cancer Research [Internet]. [cited 2021 Feb 18]. Available from: https://cancerres.aacrjournals.org/content/74/1/104.short

  90. Sherr CJ, Bartek J (2017) Cell cycle-targeted cancer therapies. Annual Review of Cancer Biol 1:41–57

    Google Scholar 

  91. Okkenhaug K, Graupera M, Vanhaesebroeck B (2016) Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis and immunotherapy. Cancer Discov 6:1090–1105

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Carnevalli LS, Sinclair C, Taylor MA, Gutierrez PM, Langdon S, Coenen-Stass AML et al (2018) PI3Kα/δ inhibition promotes anti-tumor immunity through direct enhancement of effector CD8+ T-cell activity. J Immunother Cancer 6:158

    PubMed  PubMed Central  Google Scholar 

  93. Powell JD, Pollizzi KN, Heikamp EB, Horton MR (2012) Regulation of immune responses by mTOR. Annu Rev Immunol 30:39–68

    CAS  PubMed  Google Scholar 

  94. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol Am Association Immunol 144:251–258

    CAS  Google Scholar 

  96. Langdon S, Hughes A, Taylor MA, Kuczynski EA, Mele DA, Delpuech O, et al. Combination of dual mTORC1/2 inhibition and immune-checkpoint blockade potentiates anti-tumour immunity. Oncoimmunology [Internet]. 2018 [cited 2021 Feb 17];7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136876/

  97. Ohtani M, Nagai S, Kondo S, Mizuno S, Nakamura K, Tanabe M et al (2008) Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112:635–643

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM et al (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29:565–577

    CAS  PubMed  Google Scholar 

  99. Vikas P, Borcherding N, Zhang W (2018) The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res 10:6823–6833

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ossovskaya V, Koo IC, Kaldjian EP, Alvares C, Sherman BM (2010) Upregulation of poly (ADP-Ribose) Polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 1:812–821

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol [Internet]. Frontiers; 2020 [cited 2021 Feb 18];10. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fonc.2020.578095/full

  102. Kim C, Wang X-D, Yu Y. 2020 PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response. Lin H, Cole PA, editors. eLife. eLife Sciences Publications, Ltd;;9:e60637

  103. Murai J, Huang SN, Das BB, Renaud A, Zhang Y, Doroshow JH et al (2012) Differential trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25:2677–2681

    PubMed  PubMed Central  Google Scholar 

  105. Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ et al (2014) Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Translational Med. https://doi.org/10.1126/scitranslmed.3007965

    Article  Google Scholar 

  106. Lee H-S, Lee NCO, Kouprina N, Kim J-H, Kagansky A, Bates S et al (2016) Effects of anticancer drugs on chromosome instability and new clinical implications for tumor-suppressing therapies. Cancer Res 76:902–911

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mitchison TJ, Pineda J, Shi J, Florian S (2017) Is inflammatory micronucleation the key to a successful anti-mitotic cancer drug? Open Biol 7:e170182

    Google Scholar 

  108. Cordova AF, Ritchie C, Böhnert V, Mardjuki RE, Li L. 2020 Murine M1 macrophages are among the direct responders to tumor-derived extracellular cGAMP and their human counterparts use SLC46A2 to import cGAMP. bioRxiv. Cold Spring Harbor Laboratory 2020. 04. 15.043299

  109. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17:2619–2627

    CAS  PubMed  Google Scholar 

  110. Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21:100–107

    CAS  PubMed  Google Scholar 

  111. Baselga J, Albanell J (2001) Mechanism of action of anti-HER2 monoclonal antibodies. Ann Oncol 12:S35-41

    PubMed  Google Scholar 

  112. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61:4744–4749

    CAS  PubMed  Google Scholar 

  113. Muntasell A, Cabo M, Servitja S, Tusquets I, Martínez-García M, Rovira A, et al. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy. Front Immunol [Internet]. Frontiers; 2017 [cited 2021 Jan 27];8. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2017.01544/full

  114. Hannesdóttir L, Tymoszuk P, Parajuli N, Wasmer M-H, Philipp S, Daschil N et al (2013) Lapatinib and doxorubicin enhance the Stat1-dependent antitumor immune response. Eur J Immunol 43:2718–2729

    PubMed  Google Scholar 

  115. Benedetti R, Dell’Aversana C, Giorgio C, Astorri R, Altucci L. Breast Cancer Vaccines: New Insights. Front Endocrinol [Internet]. Frontiers; 2017 [cited 2021 Feb 19];8. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fendo.2017.00270/full

  116. Peoples GE (2019) Improving the outcomes of checkpoint inhibitors in breast cancer. Lancet Oncol 20:316–318

    CAS  PubMed  Google Scholar 

  117. Loi S, Giobbie-Hurder A, Gombos A, Bachelot T, Hui R, Curigliano G et al (2019) Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncol 20:371–382

    CAS  PubMed  Google Scholar 

  118. Penn I, Starzl TE (1973) Immunosuppression and Cancer. Transplant Proc 5:943–947

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Horvat TZ, Adel NG, Dang T-O, Momtaz P, Postow MA, Callahan MK et al (2015) Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at memorial sloan kettering cancer center. J Clin Oncol 33:3193–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer [Internet]. 2020 [cited 2021 Feb 19];2. Available from: https://doi.org/10.1093/narcan/zcaa002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Burkard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Burkard, M.E. Classes of therapeutics to amplify the immune response. Breast Cancer Res Treat 191, 277–289 (2022). https://doi.org/10.1007/s10549-021-06369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06369-3

Keywords

Navigation