Skip to main content

Advertisement

Log in

Randomized Phase II Trial of Capecitabine and Lapatinib with or without IMC-A12 (Cituxumumab) in Patients with HER2-Positive Advanced Breast Cancer Previously Treated with Trastuzumab and Chemotherapy: NCCTG N0733 (Alliance)

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

To compare efficacy and safety of capecitabine and lapatinib with or without IMC-A12 (cituxumumab) in patients with HER2-positive metastatic breast cancer (MBC) previously treated with trastuzumab.

Patients and methods

Following an initial safety run-in cohort, patients were randomized 1:2 to Arm A (capecitabine and lapatinib) or to Arm B (capecitabine, lapatinib, and cituxumumab). Given the frequency of non-hematologic grade ≥ 3 adverse events in those receiving the three-drug combination in the safety cohort, lapatinib and capecitabine doses were reduced in Arm B only. The primary objective was to determine if the addition of cituxumumab to capecitabine and lapatinib improved progression-free survival (PFS) compared with capecitabine and lapatinib. Secondary objectives included a comparison between arms of other clinical endpoints, safety, change in overall quality of life (QOL) and self-assessed fatigue, rash, diarrhea, and hand-foot syndrome.

Results

From July 2008 to March 2012, 68 patients (out of 142 planned) were enrolled and 63 were evaluable, including 8 for the safety run-in and 55 for the randomized cohort. Study enrollment was stopped early due to slow accrual. The addition of cituxumumab to capecitabine and lapatinib did not improve PFS (HR 0.93, 95% CI: 0.52–1.64). Furthermore, no difference in objective response rate or overall survival (OS) was observed. No difference between arms was observed in grade ≥ 3 adverse events, overall QOL change from baseline after 4 cycles of treatment.

Conclusion

The addition of cituxumumab to lapatinib and capecitabine did not improve PFS or OS compared with lapatinib and capecitabine in patients with HER2-positive MBC.

Clinical trial registry

ClinicalTrials.gov Identifier: NCT00684983

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4

Similar content being viewed by others

Data availability

Data collection and statistical analyses were conducted by the Alliance Statistics and Data Center and is available upon request. All data generated or analyzed during this study are included in this published article.

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. Ca Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Pinto AC, Ades F, de Azambuja E, Piccart-Gebhart M (2013) Trastuzumab for patients with HER2 positive breast cancer: delivery, duration and combination therapies. Breast (Edinburgh, Scotland) 22(Suppl 2):S152-155. https://doi.org/10.1016/j.breast.2013.07.029

    Article  Google Scholar 

  3. O’Sullivan CC, Smith KL (2014) Therapeutic considerations in treating HER2-positive metastatic breast cancer. Curr Breast Cancer Reports 6(3):169–182. https://doi.org/10.1007/s12609-014-0155-y

    Article  CAS  Google Scholar 

  4. Zardavas D, Cameron D, Krop I, Piccart M (2013) Beyond trastuzumab and lapatinib: new options for HER2-positive breast cancer. Am SocClinOncolEduc Book Am SocClinOncol Meet. https://doi.org/10.1200/EdBook_AM.2013.33.e2

    Article  Google Scholar 

  5. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ (2005) Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Can Res 65(23):11118–11128. https://doi.org/10.1158/0008-5472.can-04-3841

    Article  CAS  Google Scholar 

  6. Jones HE, Gee JM, Taylor KM, Barrow D, Williams HD, Rubini M, Nicholson RI (2005) Development of strategies for the use of anti-growth factor treatments. EndocrRelat Cancer 12(Suppl 1):S173-182. https://doi.org/10.1677/erc.1.01004

    Article  CAS  Google Scholar 

  7. Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M, Nicholson RI (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. EndocrRelat Cancer 12(Suppl 1):S99-s111. https://doi.org/10.1677/erc.1.01005

    Article  CAS  Google Scholar 

  8. Camirand A, Zakikhani M, Young F, Pollak M (2005) Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast cancer research BCR 7(4):R570-579. https://doi.org/10.1186/bcr1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Can Res 62(1):200–207

    CAS  Google Scholar 

  10. Haluska P, Carboni JM, Loegering DA, Lee FY, Wittman M, Saulnier MG, Frennesson DB, Kalli KR, Conover CA, Attar RM, Kaufmann SH, Gottardis M, Erlichman C (2006) In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Can Res 66(1):362–371. https://doi.org/10.1158/0008-5472.can-05-1107

    Article  CAS  Google Scholar 

  11. Frogne T, Jepsen JS, Larsen SS, Fog CK, Brockdorff BL, Lykkesfeldt AE (2005) Antiestrogen-resistant human breast cancer cells require activated protein kinase B/Akt for growth. EndocrRelat Cancer 12(3):599–614. https://doi.org/10.1677/erc.1.00946

    Article  CAS  Google Scholar 

  12. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Can Res 66(3):1500–1508. https://doi.org/10.1158/0008-5472.can-05-2925

    Article  CAS  Google Scholar 

  13. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ (2007) Rapamycin induces feedback activation of Aktsignaling through an IGF-1R-dependent mechanism. Oncogene 26(13):1932–1940. https://doi.org/10.1038/sj.onc.1209990

    Article  CAS  PubMed  Google Scholar 

  14. Wilky BA, Rudek MA, Ahmed S, Laheru DA, Cosgrove D, Donehower RC, Nelkin B, Ball D, Doyle LA, Chen H, Ye X, Bigley G, Womack C, Azad NS (2015) A phase I trial of vertical inhibition of IGF signalling using cixutumumab, an anti-IGF-1R antibody, and selumetinib, an MEK 1/2 inhibitor, in advanced solid tumours. Br J Cancer 112(1):24–31. https://doi.org/10.1038/bjc.2014.515

    Article  CAS  PubMed  Google Scholar 

  15. Higano CS, Berlin J, Gordon M, LoRusso P, Tang S, Dontabhaktuni A, Schwartz JD, Cosaert J, Mehnert JM (2015) Safety, tolerability, and pharmacokinetics of single and multiple doses of intravenous cixutumumab (IMC-A12), an inhibitor of the insulin-like growth factor-I receptor, administered weekly or every 2 weeks in patients with advanced solid tumors. Invest New Drugs 33(2):450–462. https://doi.org/10.1007/s10637-015-0217-7

    Article  CAS  PubMed  Google Scholar 

  16. Cao H, Cui L, Ma W, Zhu L, Wang K, Ni Y, Wang Y, Du J (2017) Adverse events and efficacy of cixutumumab in phase II clinical trials: a systematic review and meta-analysis. Clin Drug Investig 37(2):135–153. https://doi.org/10.1007/s40261-016-0475-y

    Article  CAS  PubMed  Google Scholar 

  17. Abou-Alfa GK, Capanu M, O’Reilly EM, Ma J, Chou JF, Gansukh B, Shia J, Kalin M, Katz S, Abad L, Reidy-Lagunes DL, Kelsen DP, Chen HX, Saltz LB (2014) A phase II study of cixutumumab (IMC-A12, NSC742460) in advanced hepatocellular carcinoma. J Hepatol 60(2):319–324. https://doi.org/10.1016/j.jhep.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  18. Novello S, Scagliotti G, de Castro G, Kiyik M, Kowalyszyn R, Deppermann KM, Arriola E, Bosquee L, Novosiadly RD, Nguyen TS, Forest A, Tang S, Kambhampati SR, Cosaert J, Reck M (2017) An open-label, multicenter, randomized, Phase II study of cisplatin and pemetrexed with or without cixutumumab (IMC-A12) as a first-line therapy in patients with advanced nonsquamous non-small cell lung cancer. J ThoracOncol Off Publ Intern Assoc Study Lung Cancer 12(2):383–389. https://doi.org/10.1016/j.jtho.2016.07.013

    Article  Google Scholar 

  19. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743. https://doi.org/10.1056/NEJMoa064320

    Article  CAS  PubMed  Google Scholar 

  20. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92(3):205–216

    Article  CAS  Google Scholar 

  21. Sloan J, O'Fallon JR, Suman VJ, Sargent DJ (1998) Incorporating quality of life measurement into oncology clinical trials. Proc Am Stat Assoc 282–287

  22. Bretscher M, Rummans T, Sloan J, Kaur J, Bartlett A, Borkenhagen L, Loprinzi C (1999) Quality of life in hospice patients. A pilot study. Psychosomatics 40(4):309–313. https://doi.org/10.1016/S0033-3182(99)71224-7

    Article  CAS  PubMed  Google Scholar 

  23. Giorgi F, Cellerino R, Gramazio A, Tummarello D, Menichetti ET, Giordani P, Antognoli S, Carle F, Piga A (1996) Assessing quality of life in patients with cancer: a comparison of a visual-analogue and a categorical model. Am J ClinOncol 19(4):394–399

    Article  CAS  Google Scholar 

  24. Hyland ME, Sodergren SC (1996) Development of a new type of global quality of life scale, and comparison of performance and preference for 12 global scales. Qual Life Res 5(5):469–480

    Article  CAS  Google Scholar 

  25. Littman GS, Walker BR, Schneider BE (1985) Reassessment of verbal and visual analog ratings in analgesic studies. ClinPharmacolTher 38(1):16–23

    CAS  Google Scholar 

  26. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481. https://doi.org/10.1080/01621459.1958.10501452

    Article  Google Scholar 

  27. Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother 50(3):163–170

    CAS  Google Scholar 

  28. Locke DE, Decker PA, Sloan JA, Brown PD, Malec JF, Clark MM, Rummans TA, Ballman KV, Schaefer PL, Buckner JC (2007) Validation of single-item linear analog scale assessment of quality of life in neuro-oncology patients. J Pain Symptom Manage 34(6):628–638. https://doi.org/10.1016/j.jpainsymman.2007.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bulletin 1(6):80–83. https://doi.org/10.2307/3001968

    Article  Google Scholar 

  30. Ryan Q, Ibrahim A, Cohen MH, Johnson J, Ko CW, Sridhara R, Justice R, Pazdur R (2008) FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist 13(10):1114–1119. https://doi.org/10.1634/theoncologist.2008-0816

    Article  CAS  PubMed  Google Scholar 

  31. Belani CP, Dahlberg SE, Rudin CM, Fleisher M, Chen HX, Takebe N, Velasco MR Jr, Tester WJ, Sturtz K, Hann CL, Shanks JC, Monga M, Ramalingam SS, Schiller JH (2016) Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer: a trial of the ECOG-ACRIN Cancer Research Group (E1508). Cancer 122(15):2371–2378. https://doi.org/10.1002/cncr.30062

    Article  CAS  PubMed  Google Scholar 

  32. Gradishar WJ, Yardley DA, Layman R, Sparano JA, Chuang E, Northfelt DW, Schwartz GN, Youssoufian H, Tang S, Novosiadly R, Forest A, Nguyen TS, Cosaert J, Grebennik D, Haluska P (2016) Clinical and translational results of a phase II, randomized trial of an Anti-IGF-1R (Cixutumumab) in women with breast cancer that progressed on endocrine therapy. Clin Cancer Res Off J Am Assoc Cancer Res 22(2):301–309. https://doi.org/10.1158/1078-0432.ccr-15-0588

    Article  CAS  Google Scholar 

  33. Hussain M, Rathkopf D, Liu G, Armstrong A, Kelly WK, Ferrari A, Hainsworth J, Joshi A, Hozak RR, Yang L, Schwartz JD, Higano CS (2015) A randomised non-comparative phase II trial of cixutumumab (IMC-A12) or ramucirumab (IMC-1121B) plus mitoxantrone and prednisone in men with metastatic docetaxel-pretreated castration-resistant prostate cancer. European journal of cancer (Oxford, England 1990) 51(13):1714–1724. https://doi.org/10.1016/j.ejca.2015.05.019

    Article  CAS  Google Scholar 

  34. Yu EY, Li H, Higano CS, Agarwal N, Pal SK, Alva A, Heath EI, Lam ET, Gupta S, Lilly MB, Inoue Y, Chi KN, Vogelzang NJ, Quinn DI, Cheng HH, Plymate SR, Hussain M, Tangen CM, Thompson IM Jr (2015) SWOG S0925: a randomized phase ii study of androgen deprivation combined with cixutumumab versus androgen deprivation alone in patients with new metastatic hormone-sensitive prostate cancer. J ClinOncol 33(14):1601–1608. https://doi.org/10.1200/jco.2014.59.4127

    Article  CAS  Google Scholar 

  35. Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG, Doyle LA, Chen H, Blaney SM (2015) Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 62(3):440–444. https://doi.org/10.1002/pbc.25334

    Article  CAS  PubMed  Google Scholar 

  36. Langer CJ, Novello S, Park K, Krzakowski M, Karp DD, Mok T, Benner RJ, Scranton JR, Olszanski AJ, Jassem J (2014) Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J ClinOncol 32(19):2059–2066. https://doi.org/10.1200/jco.2013.54.4932

    Article  CAS  Google Scholar 

  37. Haluska P, Menefee M, Plimack ER, Rosenberg J, Northfelt D, LaVallee T, Shi L, Yu XQ, Burke P, Huang J, Viner J, McDevitt J, LoRusso P (2014) Phase I dose-escalation study of MEDI-573, a bispecific, antiligand monoclonal antibody against IGFI and IGFII, in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res 20(18):4747–4757. https://doi.org/10.1158/1078-0432.ccr-14-0114

    Article  CAS  Google Scholar 

  38. Robertson JF, Ferrero JM, Bourgeois H, Kennecke H, de Boer RH, Jacot W, McGreivy J, Suzuki S, Zhu M, McCaffery I, Loh E, Gansert JL, Kaufman PA (2013) Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol 14(3):228–235. https://doi.org/10.1016/s1470-2045(13)70026-3

    Article  CAS  PubMed  Google Scholar 

  39. Higano CS, Yu EY, Whiting SH, Gordon MS, LoRusso P, Fox F, Katz TL, Roecker JM, Schwartz JD (2007) A phase I, first in man study of weekly IMC-A12, a fully human insulin like growth factor-I receptor IgG1 monoclonal antibody, in patients with advanced solid tumors. J ClinOncol 25(18):3505–3505. https://doi.org/10.1200/jco.2007.25.18_suppl.3505

    Article  Google Scholar 

  40. Baselga J, Morales SM, Awada A, Blum JL, Tan AR, Ewertz M, Cortes J, Moy B, Ruddy KJ, Haddad T, Ciruelos EM, Vuylsteke P, Ebbinghaus S, Im E, Eaton L, Pathiraja K, Gause C, Mauro D, Jones MB, Rugo HS (2017) A phase II study of combined ridaforolimus and dalotuzumab compared with exemestane in patients with estrogen receptor-positive breast cancer. Breast Cancer Res Treat 163(3):535–544. https://doi.org/10.1007/s10549-017-4199-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryan PD, Neven P, Blackwell KL, Dirix LY, Barrios CH, Miller WH Jr, Fein LD, Fenton D, Benner RJ, Meech SJ, et al. 2011 Figitumumab plus exemestane versus exemestane as first-line treatment of postmenopausal hormone receptor-positive advanced breast cancer: a randomized, open-label phase II trial. Cancer Research 71 (24 Suppl): Abstract nr P1-17-01. https://doi.org/https://doi.org/10.1158/0008-5472. SABCS11-P1-17-01. Accessed 28 January 2021.

  42. Yee D, Paoloni M, Van’tVeer L, Sanil A, Yau C, Forero A, Chien AJ, Wallace AM, Moulder S, Albain KS, Kaplan HG, Elias AD, Haley BB, Boughey JC, Kemmer KA, Korde LA, Isaacs C, Minton S, Nanda R, De Michele A, Lang JE, Buxton MB, Hylton NM, Symmans WF, Lyandres J, Hogarth M, Perlmutter J, Esserman LJ, Berry DA (2017) Abstract P6–11-04: the evaluation of ganitumab/metformin plus standard neoadjuvant therapy in high-risk breast cancer: results from the I-SPY 2 trial. Cancer Res. https://doi.org/10.1158/1538-7445.SABCS16-P6-11-04

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rajan A, Carter CA, Berman A, Cao L, Kelly RJ, Thomas A, Khozin S, Chavez AL, Bergagnini I, Scepura B, Szabo E, Lee MJ, Trepel JB, Browne SK, Rosen LB, Yu Y, Steinberg SM, Chen HX, Riely GJ, Giaccone G (2014) Cixutumumab for patients with recurrent or refractory advanced thymic epithelial tumours: a multicentre, open-label, phase 2 trial. Lancet Oncol 15(2):191–200. https://doi.org/10.1016/s1470-2045(13)70596-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ekyalongo RC, Yee D (2017) Revisiting the IGF-1R as a breast cancer target. PrecisOncol 1:14. https://doi.org/10.1038/s41698-017-0017-y

    Article  Google Scholar 

  45. Yee D (2018) Anti-insulin-like growth factor therapy in breast cancer. J MolEndocrinol 61(1):T61-t68. https://doi.org/10.1530/jme-17-0261

    Article  Google Scholar 

  46. Wilcox G (2005) Insulin and insulin resistance. ClinBiochem Rev 26(2):19–39

    Google Scholar 

  47. De Meyts P, Sajid W, Palsgaard J, et al (2000–2013) Insulin and IGF-I receptor structure and binding mechanism. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000–2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6192/. Accessed 28 January 2021.

  48. Feng Y, Dimitrov DS (2012) Antibody-based therapeutics against components of the IGF system. Oncoimmunology 1(8):1390–1391. https://doi.org/10.4161/onci.20925

    Article  PubMed  PubMed Central  Google Scholar 

  49. Friedbichler K, Hofmann MH, Kroez M, Ostermann E, Lamche HR, Koessl C, Borges E, Pollak MN, Adolf G, Adam PJ (2014) Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol Cancer Ther 13(2):399–409. https://doi.org/10.1158/1535-7163.mct-13-0598

    Article  CAS  PubMed  Google Scholar 

  50. Crown J, Sablin MP, Cortés J, Bergh J, Im S, Lu YS, et al (2018) Xentuzumab (BI 836845), an insulin-like growth factor-neutralizing antibody, combined with exemestane and everolimus in hormone receptor-positive locally advanced/metastatic breast cancer: randomized Phase 2 results. Presented at the San Antonio Breast Cancer Symposium, December 4–8, 2018. P6-21-01.

Download references

Acknowledegments

The authors extend their gratitude to the patients who participated in this clinical trial. They further recognize and thank the clinical research staff at each of the participating study sites, as well as the breast cancer research committee leadership and centralized administrative support provided by the NCCTG and Alliance for Clinical Trials in Oncology.

Funding

Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers U10CA180821 and U10CA180882 (to the Alliance for Clinical Trials in Oncology), UG1CA232760, U10CA180820 and UG1CA189859 (ECOG-ACRIN), U10CA180868 (NSABP/NRG Oncology), UG1CA189821 and U10CA180888 (SWOG), and https://acknowledgments.alliancefound.org. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Paul Haluska, Karla Ballman, Amylou Dueck, and Beiyun Chen contributed to the study conception and design. Material preparation, data collection and analysis, and interpretation of results were performed by Tufia Haddad, Jun He, Kathleen Tenner, and Amylou Dueck. The first draft of the manuscript was written by Tufia Haddad with critical review and support by Ciara O’Sullivan and Jun He. Donald Northfelt, Hannah Linden, Joseph A. Sparano, Judith O. Hopkins, Chamath De Silva, and Edith A. Perez, Paul Haluska, and Tufia Haddad led study sites and/or cooperative groups that enrolled patients and collected data for the analysis. Beiyun Chen served as pathologist throughout the trial and participated in study design. Matthew Goetz and Paul Haluska supervised all aspects of the study. Matthew Goetz supervised data interpretation and provided critical review of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Tufia C. Haddad.

Ethics declarations

Conflicts of interest

Jun He, Beiyun Chen, Donald Northfelt, Amylou C. Dueck, Karla V. Ballman, Kathleen S. Tenner, Hannah Linden, Joseph A. Sparano6, Judith O. Hopkins7, Chamath De Silva, Edith A. Perez. Ciara C. O’Sullivan declares research funding to institution (Mayo) from the following companies: Lilly, Seattle Genetics, Bavarian Nordic, Minnemarita Therapeutics, and Biovica. Matthew P. Goetz declares funding acknowledgement to named Professorship: Erivan K. Haub Family Professor of Cancer Research Honoring Richard F. Emslander, M.D., and consulting fees to institution from Eagle Pharmaceuticals, Lilly, Biovica, Novartis, Sermonix, Context Pharm, Pfizer, and Biotheranostics, and grant funding to institution from Pfizer, Sermonix, and Lilly. Paul Haluska discloses he is a current employee and stockholder of Bristol Myers Squibb. Tufia C. Haddad declares grant funding to the Mayo Clinic from Takeda Oncology.

Consent for participate

Each participant signed an IRB-approved, protocol-specific informed consent document in accordance with federal and institutional guidelines.

Consent for publication

Patients signed informed consent regarding publishing their data.

Ethical Approval

The study was conducted in accordance with the Declaration of Helsinki, and this phase II therapeutic trial was monitored at least twice annually by the Data and Safety Monitoring Board, a standing committee composed of individuals from within and outside of the Alliance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, T.C., He, J., O’Sullivan, C.C. et al. Randomized Phase II Trial of Capecitabine and Lapatinib with or without IMC-A12 (Cituxumumab) in Patients with HER2-Positive Advanced Breast Cancer Previously Treated with Trastuzumab and Chemotherapy: NCCTG N0733 (Alliance). Breast Cancer Res Treat 188, 477–487 (2021). https://doi.org/10.1007/s10549-021-06221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06221-8

Keywords

Navigation