Skip to main content

Advertisement

Log in

Overexpression of Stat3 increases circulating cfDNA in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Current studies on circulating cell-free DNA (cfDNA) have been focusing on its potential as biomarkers in liquid biopsy by detecting its content or genetic and epigenetic changes for the evaluation of tumor burden and therapeutic efficacy. However, the regulatory mechanism of cfDNA release remains unclear. Stat3 has been documented as an oncogene for the development and metastasis of breast cancer cells. In this study, we investigated whether Stat3 affects the release of cfDNA into blood and its association with the number of circulating tumor cells (CTCs).

Methods

The cfDNA level in plasma of patients with breast cancer and healthy volunteers were determined by quantitative real-time PCR. Three mouse breast cancer models with different Stat3 expression were generated and used to established three breast cancer orthotopic animal models to examine the effect of Stat3 on cfDNA release in vivo. Stat3 mediated Epithelial-mesenchymal phenotype transition of CTCs was determined by immunofluorescence assay and Western blot assay.

Results

The data showed that Stat3 increased circulating cfDNA, which is correlated with the increased volume of primary tumors and number of CTCs, accompanied with the dynamic EMT changes regulated by Snail induction. Furthermore, the high level of total circulating cfDNA and Stat3-cfDNA in patients with breast cancer were detected by quantitative real-time PCR using GAPDH and Stat3 primers.

Conclusion

Our results suggested that Stat3 increases the circulating cfDNA and CTCs in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437. https://doi.org/10.1038/nrc3066

    Article  CAS  PubMed  Google Scholar 

  2. Umetani N, Giuliano AE, Hiramatsu SH, Amersi F, Nakagawa T, Martino S, Hoon DS (2006) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270–4276. https://doi.org/10.1200/JCO.2006.05.9493

    Article  CAS  PubMed  Google Scholar 

  3. Giuliano M, Giordano A, Jackson S, Giorg UD, Mego M, Cohen EN, Gao H, Anfossi S, Handy BC, Ueno NT et al (2014) Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res Treat 16:440–457. https://doi.org/10.1186/s13058-014-0440-8

    Article  CAS  Google Scholar 

  4. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J (2016) Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell 164:57–68. https://doi.org/10.1016/j.cell.2015.11.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Madhavan D, Wallwiener M, Bents K, Zucknick M, Nees J, Schott S, Cuk K, Riethdorf S, Trumpp A, Pantel K et al (2014) Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res Treat 146:163–174. https://doi.org/10.1007/s10549-014-2946-2

    Article  CAS  PubMed  Google Scholar 

  6. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Eng J Med 368:1199–1209. https://doi.org/10.1056/NEJMoa1213261

    Article  CAS  Google Scholar 

  7. Ma F, Zhu W, Guan Y, Yang L, Xia X, Chen S, Li Q, Guan X, Yi Z, Qian H et al (2016) ctDNA dynamics: a novel indicator to track resistance in metastatic breast cancer treated with anti-HER2 therapy. Oncotarget 7:66020–66031. https://doi.org/10.18632/oncotarget.11791

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng J, Holland-Letz T, Wallwiener M, Surowy H, Cuk K, Schott S, Trumpp A, Pantel K, Sohn C, Schneeweiss A et al (2018) Circulating free DNA integrity and concentration as independent prognostic markers in metastatic breast cancer. Breast Cancer Res Treat 169:69–82. https://doi.org/10.1007/s10549-018-4666-5

    Article  CAS  PubMed  Google Scholar 

  9. Tang Z, Li L, Shen L, Shen X, Ju S, Cong H (2018) Diagnostic Value of Serum Concentration and Integrity of Circulating Cell-Free DNA in Breast Cancer: A Comparative Study With CEA and CA15-3. Lab Med 49:323–328. https://doi.org/10.1093/labmed/lmy019

    Article  PubMed  Google Scholar 

  10. Lin SY, Orozco JIJ, Hoon DSB (2018) Detection of Minimal Residual Disease and Its Clinical Applications in Melanoma and Breast Cancer Patients. Adv Exp Med Biol 1100:83–95. https://doi.org/10.1007/978-3-319-97746-1_5

    Article  PubMed  Google Scholar 

  11. Choi JJ, Reich CF, Pisetsky DS (2005) The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology 115:55–62. https://doi.org/10.1111/j.1365-2567.2005.02130.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Francis G, Stein S (2015) Circulating Cell-Free Tumour DNA in the Management of Cancer. Int J Mol Sci 16:14122–14142. https://doi.org/10.3390/ijms160614122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gahan PB, Swaminathan R (2008) Circulating nucleic acids in plasma and serum. Recent developments. Ann N Y Acad Sci 1137:1–6. https://doi.org/10.1196/annals.1448.050

    Article  CAS  PubMed  Google Scholar 

  14. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P (2001) About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 313:139–142

    Article  CAS  Google Scholar 

  15. Gahan PB, Stroun M (2010) The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 28:529–538. https://doi.org/10.1002/cbf.1690

    Article  CAS  PubMed  Google Scholar 

  16. Bronkhorst AJ, Wentzel JF, Aucamp J, van Dyk E, du Plessis L, Pretorius PJ (2016) Characterization of the cell-free DNA released by cultured cancer cells. Biochem Biophys Acta 1863:157–165. https://doi.org/10.1016/j.bbamcr.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  17. Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, Rossier A, Chen XQ, Anker P (2000) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906:161–168

    Article  CAS  Google Scholar 

  18. Wang W, Kong P, Ma G, Li L, Zhu J, Xia T, Xie H, Zhou W, Wang S (2017) Characterization of the release and biological significance of cell-free DNA from breast cancer cell lines. Oncotarget 8:43180–43191. https://doi.org/10.18632/oncotarget.17858

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwarzenbach H, Alix-Panabieres C, Muller I, Letang N, Vendrell JP, Rebillard X, Pantel K (2009) Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 15:1032–1038. https://doi.org/10.1158/1078-0432.CCR-08-1910

    Article  CAS  PubMed  Google Scholar 

  20. Avalle L, Camporeale A, Morciano G, Caroccia N, Ghetti E, Orecchia V, Viavattene D, Giorgi C, Pinton P, Poli V (2018) STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca(2+) fluxes and apoptotic responses. Cell Death Differ. https://doi.org/10.1038/s41418-018-0171-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim DJ, Kataoka K, Sano S, Connolly K, Kiguchi K, DiGiovanni J (2009) Targeted disruption of Bcl-xL in mouse keratinocytes inhibits both UVB- and chemically induced skin carcinogenesis. Mol Carcinog 48:873–885. https://doi.org/10.1002/mc.20527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Darnowski JW, Goulette FA, Guan YJ, Chatterjee D, Yang ZF, Cousens LP, Chin YE (2006) Stat3 cleavage by caspases: impact on full-length Stat3 expression, fragment formation, and transcriptional activity. J Biol Chem 281:17707–17717. https://doi.org/10.1074/jbc.M600088200

    Article  CAS  PubMed  Google Scholar 

  23. Minus MB, Liu W, Vohidov F, Kasembeli MM, Long X, Krueger MJ, Stevens A, Kolosov MI, Tweardy DJ, Sison EA et al (2015) Rhodium(II) Proximity-Labeling Identifies a Novel Target Site on STAT3 for Inhibitors with Potent Anti-Leukemia Activity. Angew Chem 54:13085–13089. https://doi.org/10.1002/anie.201506889

    Article  CAS  Google Scholar 

  24. Lowe AC, Pignon JC, Carvo I, Drage MG, Constantine NM, Jones N, Kroll Y, Frank DA, Signoretti S, Cibas ES (2015) Young investigator challenge: Application of cytologic techniques to circulating tumor cell specimens: Detecting activation of the oncogenic transcription factor STAT3. Cancer Cytopathol 123:696–706. https://doi.org/10.1002/cncy.21640

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Zhang SB, Sun W, Yang S, Zhang M, Wang W, Liu C, Zhang K, Swarts S, Fenton BM et al (2009) B1 sequence-based real-time quantitative PCR: a sensitive method for direct measurement of mouse plasma DNA levels after gamma irradiation. Int J Radiat Oncol Biol Phys 74:1592–1599. https://doi.org/10.1016/j.ijrobp.2009.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaw JA, Guttery DS, Hills A, Fernandez-Garcia D, Page K, Rosales BM, Goddard KS, Hastings RK, Luo J, Ogle O et al (2017) Mutation Analysis of Cell-Free DNA and Single Circulating Tumor Cells in Metastatic Breast Cancer Patients with High Circulating Tumor Cell Counts. Clin Cancer Res 23:88–96. https://doi.org/10.1158/1078-0432.CCR-16-0825

    Article  CAS  PubMed  Google Scholar 

  27. Nygaard AD, Holdgaard PC, Spindler KLG, Pallisgaard N, Jakobsen A (2013) The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC. Br J Cancer 110:363–368. https://doi.org/10.1038/bjc.2013.705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santillan-Benitez JG, Mendieta-Zeron H, Gomez-Olivan LM, Ordonez Quiroz A, Torres-Juarez JJ, Gonzalez-Banales JM (2014) JAK2, STAT3 and SOCS3 gene expression in women with and without breast cancer. Gene 547:70–76. https://doi.org/10.1016/j.gene.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  29. Eskiler GG, Bezdegumeli E, Ozman Z, Ozkan AD, Bilir C, Kucukakca BN, Ince MN, Men AY, Aktas O, Horoz YE et al (2019) IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia. Bratisl Med J 120:819–826. https://doi.org/10.4149/bll_2019_136

    Article  Google Scholar 

  30. Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2009) The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer 100:1277–1286. https://doi.org/10.1038/sj.bjc.6605013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584. https://doi.org/10.1126/science.1228522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Li J, Cadilha BL, Markota A, Voigt C, Huang Z, Lin PP, Wang DD, Dai J, Kranz G et al (2019) Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Sci Adv. https://doi.org/10.1126/sciadv.aav4275

    Article  PubMed  PubMed Central  Google Scholar 

  33. Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S (2019) Circulating Tumor Cells with Stemness and Epithelial-to-Mesenchymal Transition Features Are Chemoresistant and Predictive of Poor Outcome in Metastatic Breast Cancer. Mol Cancer Ther 18:437–447. https://doi.org/10.1158/1535-7163.MCT-18-0584

    Article  CAS  PubMed  Google Scholar 

  34. Masunaga N, Kagara N, Motooka D, Nakamura S, Miyake T, Tanei T, Naoi Y, Shimoda M, Shimazu K, Kim SJ et al (2018) Highly sensitive detection of ESR1 mutations in cell-free DNA from patients with metastatic breast cancer using molecular barcode sequencing. Breast Cancer Res Treat 167:49–58. https://doi.org/10.1007/s10549-017-4487-y

    Article  CAS  PubMed  Google Scholar 

  35. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3007094

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wei L, Wu W, Han L, Yu W, Du Y (2018) A quantitative analysis of the potential biomarkers of non-small cell lung cancer by circulating cell-free DNA. Oncol Lett 16:4353–4360. https://doi.org/10.3892/ol.2018.9198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kloten V, Ruchel N, Bruchle NO, Gasthaus J, Freudenmacher N, Steib F, Mijnes J, Eschenbruch J, Binnebosel M, Knuchel R et al (2017) Liquid biopsy in colon cancer: comparison of different circulating DNA extraction systems following absolute quantification of KRAS mutations using Intplex allele-specific PCR. Oncotarget 8:86253–86263. https://doi.org/10.18632/oncotarget.21134

    Article  PubMed  PubMed Central  Google Scholar 

  38. Balanis N, Wendt MK, Schiemann BJ, Wang Z, Schiemann WP, Carlin CR (2013) Epithelial to mesenchymal transition promotes breast cancer progression via a fibronectin-dependent STAT3 signaling pathway. J Biol Chem 288:17954–17967. https://doi.org/10.1074/jbc.M113.475277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marotta L, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker S, Bloushtain-Qimron N, Kim J, Choudhury S, Maruyama R et al (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24 stem cell-like breast cancer cells in human tumors. Clin Invest. https://doi.org/10.1172/jci44745ds1

    Article  Google Scholar 

  40. Cristofanilli M, Pierga J-Y, Reuben J, Rademaker A, Davis AA, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D et al (2019) The clinical use of circulating tumor cells (CTCs) enumeration for staging of metastatic breast cancer (MBC): International expert consensus paper. Crit Rev Oncol 134:39–45. https://doi.org/10.1016/j.critrevonc.2018.12.004

    Article  Google Scholar 

  41. Bauer ECA, Schochter F, Widschwendter P, DeGregorio A, Andergassen U, Friedl TWP, Fasching PA, Fehm T, Schneeweiss A, Beckmann MW et al (2018) Prevalence of circulating tumor cells in early breast cancer patients 2 and 5 years after adjuvant treatment. Breast Cancer Res Treat 171:571–580. https://doi.org/10.1007/s10549-018-4856-1

    Article  CAS  PubMed  Google Scholar 

  42. Trapp E, Janni W, Schindlbeck C, Juckstock J, Andergassen U, de Gregorio A, Alunni-Fabbroni M, Tzschaschel M, Polasik A, Koch JG et al (2019) Presence of Circulating Tumor Cells in High-Risk Early Breast Cancer During Follow-Up and Prognosis. J Natl Cancer Inst 111:380–387. https://doi.org/10.1093/jnci/djy152

    Article  CAS  PubMed  Google Scholar 

  43. Zhang C, Guo F, Xu G, Ma J, Shao F (2015) STAT3 cooperates with Twist to mediate epithelial-mesenchymal transition in human hepatocellular carcinoma cells. Oncol Rep 33:1872–1882. https://doi.org/10.3892/or.2015.3783

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Diab I, Zhang X, Izmailova ES, Zehner ZE (2004) Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89. Oncogene 23:168–178. https://doi.org/10.1038/sj.onc.1207003

    Article  CAS  PubMed  Google Scholar 

  45. Lindsay CR, Le Moulec S, Billiot F, Loriot Y, Ngo-Camus M, Vielh P, Fizazi K, Massard C, Farace F (2016) Vimentin and Ki67 expression in circulating tumour cells derived from castrate-resistant prostate cancer. BMC Cancer 16:168. https://doi.org/10.1186/s12885-016-2192-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chimonidou M, Strati A, Malamos N, Georgoulias V, Lianidou ES (2013) SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin Chem 59:270–279. https://doi.org/10.1373/clinchem.2012.191551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by the National Natural Science Foundation of China (No. 81472489), Shandong Co-Innovation Center of Classic TCM formula (2019KF203), Shandong University of Traditional Chinese Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical approval

All procedures performed involving human participants were in accordance with the ethical standards of the institutional research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable international guidelines for the care and use of animals were followed.

Consent to participate

Informed consent was obtained from all individual participants included in the study. The present study was reviewed and approved by the Ethics Committee of the Weifang Medical University. The animal study was approved by the Ethics Committee of Weifang Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YF., Wang, XJ., Lu, Z. et al. Overexpression of Stat3 increases circulating cfDNA in breast cancer. Breast Cancer Res Treat 187, 69–80 (2021). https://doi.org/10.1007/s10549-021-06142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06142-6

Keywords

Navigation