Skip to main content

Advertisement

Log in

A comparison of complete pathologic response rates following neoadjuvant chemotherapy among South African breast cancer patients with and without concurrent HIV infection

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Among patients diagnosed with breast cancer (BC), women also living with HIV (WLWH) have worse survival than women without HIV. Chronic HIV infection may interfere with the effectiveness of BC treatment, contributing to this disparity. We attempted to determine the impact of HIV infection on response to neoadjuvant chemotherapy (NACT) among South African women with BC.

Methods

We evaluated women from the South African Breast Cancer and HIV Outcomes cohort study who had stage I–III disease, initiated NACT, underwent definitive breast surgery, and had available surgical pathology reports. We compared pathologic complete response (pCR) rates among women with and without HIV infection, using multivariable logistic regression to control for differences in tumor characteristics. We also evaluated the impact of HIV infection on pCR within subgroups based on patient and tumor factors.

Results

Of 715 women, the 173 (24.2%) WLWH were less likely to achieve pCR than women without HIV (8.7% vs 16.4%, [odds ratio (OR) 0.48, 95% confidence interval (95% CI) 0.27–0.86]). WLWH continued to have lower likelihood of achieving pCR on multivariable analysis (OR 0.52, 95% CI 0.28–0.98). A similar pattern was seen within subgroups, although HIV infection appeared to affect pCR more in ER/PR-positive BC (OR 0.24, 95% CI 0.08–0.71) than in ER/PR-negative BC (OR 0.94, 95% CI 0.39–2.29).

Conclusion

WLWH were less like to achieve pCR following NACT for BC than women without HIV. This reduced response to systemic therapy may contribute to the poorer BC outcomes seen in WLWH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are not publicly available due to local national policy but are available from the corresponding author on reasonable request.

References

  1. Harrison K, Song R, Zhang X (2010) Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. JAIDS J Acquir Immune Defic Syndr 53:124–130. https://doi.org/10.1097/QAI.0b013e3181b563e7

    Article  PubMed  Google Scholar 

  2. Siddiqi A-A, Irene Hall H, Hu X, Song R (2016) Population-based estimates of life expectancy after hiv diagnosis United States 2008–2011. J Acquir Immune Defic Syndr 72:230–236. https://doi.org/10.1097/QAI.0000000000000960

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bor J, Herbst AJ, Newell M-L, Bärnighausen T (2013) Increases in adult life expectancy in rural South Africa: valuing the scale-up of HIV treatment. Science. https://doi.org/10.1126/science.1230413

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yarchoan R, Uldrick TS (2018) HIV-associated cancers and related diseases. N Engl J Med 378:1029–1041. https://doi.org/10.1056/NEJMra1615896

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shiels MS, Pfeiffer RM, Gail MH et al (2011) Cancer burden in the HIV-infected population in the United States. JNCI J Natl Cancer Inst 103:753–762. https://doi.org/10.1093/jnci/djr076

    Article  PubMed  Google Scholar 

  6. Shiels MS, Islam JY, Rosenberg PS et al (2018) Projected cancer incidence rates and burden of incident cancer cases in HIV-infected adults in the United States through 2030. Ann Intern Med. https://doi.org/10.7326/M17-2499

    Article  PubMed  PubMed Central  Google Scholar 

  7. UNAIDS (2019) Global HIV & AIDS statistics—2019 fact sheet. UNAIDS. https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf. Accessed 19 Dec 2019

  8. McCormack VA, Febvey-Combes O, Ginsburg O, dos-Santos-Silva I (2018) Breast cancer in women living with HIV: a first global estimate. Int J Cancer 143:2732–2740. https://doi.org/10.1002/ijc.31722

    Article  CAS  PubMed  Google Scholar 

  9. Ferlay J, Ervik M, Colombet M et al (2018) Global cancer observatory: cancer tomorrow. International Agency for Research on Cancer, Lyon

    Google Scholar 

  10. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370:59–67. https://doi.org/10.1016/S0140-6736(07)61050-2

    Article  PubMed  Google Scholar 

  11. Coghill AE, Engels EA, Schymura MJ et al (2018) Risk of breast, prostate, and colorectal cancer diagnoses among HIV-infected individuals in the United States. J Natl Cancer Inst 110:959–966. https://doi.org/10.1093/jnci/djy010

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mpunga T, Znaor A, Uwizeye FR et al (2018) A case–control study of HIV infection and cancer in the era of antiretroviral therapy in Rwanda. Int J Cancer 143:1348–1355. https://doi.org/10.1002/ijc.31537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coghill AE, Shiels MS, Suneja G, Engels EA (2015) Elevated cancer-specific mortality among HIV-infected patients in the United States. J Clin Oncol 33:2376–2383. https://doi.org/10.1200/JCO.2014.59.5967

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coghill AE, Suneja G, Rositch AF et al (2019) HIV infection, cancer treatment regimens, and cancer outcomes among elderly adults in the United States. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.1742

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coghill AE, Han X, Suneja G et al (2019) Advanced stage at diagnosis and elevated mortality among US patients with cancer infected with HIV in the National Cancer Data Base. Cancer 125:2868–2876. https://doi.org/10.1002/cncr.32158

    Article  PubMed  Google Scholar 

  16. Coghill AE, Newcomb PA, Madeleine MM et al (2013) Contribution of HIV infection to mortality among cancer patients in Uganda. AIDS 27:2933–2942. https://doi.org/10.1097/01.aids.0000433236.55937.cb

    Article  PubMed  Google Scholar 

  17. Cubasch H, Dickens C, Joffe M et al (2018) Breast cancer survival in Soweto, Johannesburg, South Africa: a receptor-defined cohort of women diagnosed from 2009 to 11. Cancer Epidemiol 52:120–127. https://doi.org/10.1016/j.canep.2017.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  18. Suneja G, Lin CC, Simard EP et al (2016) Disparities in cancer treatment among patients infected with the human immunodeficiency virus: Cancer Treatment in HIV-Infected Individuals. Cancer 122:2399–2407. https://doi.org/10.1002/cncr.30052

    Article  CAS  PubMed  Google Scholar 

  19. Rositch AF, Jiang S, Coghill AE et al (2018) Disparities and determinants of cancer treatment in elderly americans living with human immunodeficiency virus/AIDS. Clin Infect Dis 67:1904–1911. https://doi.org/10.1093/cid/ciy373

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nasi M, De Biasi S, Gibellini L et al (2017) Ageing and inflammation in patients with HIV infection. Clin Exp Immunol 187:44–52. https://doi.org/10.1111/cei.12814

    Article  CAS  PubMed  Google Scholar 

  21. McCormack VA, Joffe M, van den Berg E et al (2013) Breast cancer receptor status and stage at diagnosis in over 1,200 consecutive public hospital patients in Soweto, South Africa: a case series. Breast Cancer Res 15:R84. https://doi.org/10.1186/bcr3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Neil DS, Nietz S, Buccimazza I et al (2018) Neoadjuvant chemotherapy use for nonmetastatic breast cancer at five public south african hospitals and impact on time to initial cancer therapy. Oncologist. https://doi.org/10.1634/theoncologist.2018-0535

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mohiuddin JJ, Deal AM, Carey LA et al (2016) Neoadjuvant systemic therapy utilization for younger patients with breast cancer treated in different types of cancer centers across the United States. J Am Coll Surg 223:717–728.e4. https://doi.org/10.1016/j.jamcollsurg.2016.08.541

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

    Article  PubMed  Google Scholar 

  25. Spring LM, Fell G, Arfe A et al (2020) Pathological complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-3492

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yee D, DeMichele AM, Yau C et al (2020) Association of event-free and distant recurrence-free survival with individual-level pathologic complete response in neoadjuvant treatment of stages 2 and 3 breast cancer: three-year follow-up analysis for the I-SPY2 adaptively randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2020.2535

    Article  PubMed  PubMed Central  Google Scholar 

  27. Central Intelligence Agency (2018) The world factbook 2018. Central Intelligence Agency, Washington, DC

    Google Scholar 

  28. Coovadia H, Jewkes R, Barron P et al (2009) The health and health system of South Africa: historical roots of current public health challenges. Lancet 374:817–834. https://doi.org/10.1016/S0140-6736(09)60951-X

    Article  PubMed  Google Scholar 

  29. Coetzee WC, Apffelstaedt JP, Zeeman T, Du Plessis M (2018) Disparities in breast cancer: private patients have better outcomes than public patients. World J Surg 42:727–735. https://doi.org/10.1007/s00268-017-4187-0

    Article  CAS  PubMed  Google Scholar 

  30. O’Neil DS, Chen WC, Ayeni O et al (2019) Breast cancer care quality in South Africa’s public health system: an evaluation using American Society of Clinical Oncology/National Quality Forum measures. J Glob Oncol 5:1–6

    Article  PubMed  Google Scholar 

  31. Human Sciences Research Council (2018) The fifth South African national HIV prevalence, incidence, behavior and communication survey, 2017: HIV impact assessment summary report. HSRC Press, Cape Town

    Google Scholar 

  32. Cubasch H, Ruff P, Joffe M et al (2016) South African breast cancer and HIV outcomes study: methods and baseline assessment. J Glob Oncol 3:114–124. https://doi.org/10.1200/JGO.2015.002675

    Article  PubMed Central  Google Scholar 

  33. Rouzier R, Pusztai L, Delaloge S et al (2005) Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer. J Clin Oncol 23:8331–8339. https://doi.org/10.1200/JCO.2005.01.2898

    Article  PubMed  Google Scholar 

  34. Vila J, Mittendorf EA, Farante G et al (2016) Nomograms for predicting axillary response to neoadjuvant chemotherapy in clinically node-positive patients with breast cancer. Ann Surg Oncol 23:3501–3509. https://doi.org/10.1245/s10434-016-5277-1

    Article  PubMed  Google Scholar 

  35. Gass P, Lux MP, Rauh C et al (2018) Prediction of pathological complete response and prognosis in patients with neoadjuvant treatment for triple-negative breast cancer. BMC Cancer 18:1051. https://doi.org/10.1186/s12885-018-4925-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dawood S, Broglio K, Kau S-W et al (2009) Triple receptor-negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J Clin Oncol 27:220–226. https://doi.org/10.1200/JCO.2008.17.9952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chavez-Macgregor M, Litton J, Chen H et al (2010) Pathologic complete response in breast cancer patients receiving anthracycline- and taxane-based neoadjuvant chemotherapy: evaluating the effect of race/ethnicity. Cancer 116:4168–4177. https://doi.org/10.1002/cncr.25296

    Article  PubMed  Google Scholar 

  38. Tichy JR, Deal AM, Anders CK et al (2015) Race, response to chemotherapy, and outcome within clinical breast cancer subtypes. Breast Cancer Res Treat 150:667–674. https://doi.org/10.1007/s10549-015-3350-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Warner ET, Ballman KV, Strand C et al (2016) Impact of race, ethnicity, and BMI on achievement of pathologic complete response following neoadjuvant chemotherapy for breast cancer: a pooled analysis of four prospective alliance clinical trials (A151426). Breast Cancer Res Treat 159:109–118. https://doi.org/10.1007/s10549-016-3918-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Del Fabbro E, Parsons H, Warneke CL et al (2012) The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist 17:1240–1245. https://doi.org/10.1634/theoncologist.2012-0169

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fontanella C, Lederer B, Gade S et al (2015) Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials. Breast Cancer Res Treat 150:127–139. https://doi.org/10.1007/s10549-015-3287-5

    Article  CAS  PubMed  Google Scholar 

  42. Erbes T, Stickeler E, Rücker G et al (2016) BMI and pathologic complete response to neoadjuvant chemotherapy in breast cancer: a study and meta-analysis. Clin Breast Cancer 16:e119–132. https://doi.org/10.1016/j.clbc.2016.02.018

    Article  PubMed  Google Scholar 

  43. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ et al (2017) Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin 00:20

    Google Scholar 

  44. Caan BJ, Feliciano EMC, Prado CM et al (2018) Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol 4:798–804. https://doi.org/10.1001/jamaoncol.2018.0137

    Article  PubMed  PubMed Central  Google Scholar 

  45. Omarini C, Palumbo P, Pecchi A et al (2019) Predictive role of body composition parameters in operable breast cancer patients treated with neoadjuvant chemotherapy. Cancer Manage Res 11:9563–9569. https://doi.org/10.2147/CMAR.S216034

    Article  CAS  Google Scholar 

  46. Denkert C, von Minckwitz G, Darb-Esfahani S et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

    Article  PubMed  Google Scholar 

  47. Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 4:59. https://doi.org/10.1186/s40425-016-0165-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Salgado R, Denkert C, Campbell C et al (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol 1:448–454. https://doi.org/10.1001/jamaoncol.2015.0830

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wimberly H, Brown JR, Schalper K et al (2015) PD-L1 Expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res 3:326–332. https://doi.org/10.1158/2326-6066.CIR-14-0133

    Article  CAS  PubMed  Google Scholar 

  50. Mao Y, Qu Q, Chen X et al (2016) The prognostic value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. PLoS ONE 11:e0152500. https://doi.org/10.1371/journal.pone.0152500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adams S, Gray RJ, Demaria S et al (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32:2959

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lederman MM, Funderburg NT, Sekaly RP et al (2013) Residual immune dysregulation syndrome in treated HIV infection. Advances in immunology. Elsevier, Amsterdam, pp 51–83

    Google Scholar 

  53. Taylor JG, Liapis K, Gribben JG (2015) The role of the tumor microenvironment in HIV-associated lymphomas. Biomark Med 9:473–482. https://doi.org/10.2217/bmm.15.13

    Article  CAS  PubMed  Google Scholar 

  54. Chao C, Xu L, Silverberg M et al (2015) Stromal immune infiltration in HIV-related diffuse large B-cell lymphoma is associated with HIV disease history and patient survival. AIDS 29:1943–1951. https://doi.org/10.1097/QAD.0000000000000780

    Article  CAS  PubMed  Google Scholar 

  55. Varki V, Ioffe OB, Bentzen SM et al (2018) PD-L1, B7–H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma. Cancer Immunol Immunother CII 67:805–814. https://doi.org/10.1007/s00262-018-2138-8

    Article  CAS  PubMed  Google Scholar 

  56. Scilla KA, Zandberg DP, Bentzen SM et al (2018) Case-control study of PD-1, PD-L1 and B7–H3 expression in lung cancer patients with and without human immunodeficiency virus (HIV) infection. Lung Cancer 123:87–90. https://doi.org/10.1016/j.lungcan.2018.06.028

    Article  PubMed  Google Scholar 

  57. Ali HR, Provenzano E, Dawson S-J et al (2014) Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol 25:1536–1543. https://doi.org/10.1093/annonc/mdu191

    Article  CAS  PubMed  Google Scholar 

  58. Deeks SG (2011) HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 62:141–155. https://doi.org/10.1146/annurev-med-042909-093756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gilbert CA, Slingerland JM (2013) Cytokines, obesity, and cancer: new insights on mechanisms linking obesity to cancer risk and progression. Annu Rev Med 64:45–57. https://doi.org/10.1146/annurev-med-121211-091527

    Article  CAS  PubMed  Google Scholar 

  60. Welz T, Wyen C, Hensel M (2017) Drug interactions in the treatment of malignancy in HIV-infected patients. Oncol Res Treat 40:120–127. https://doi.org/10.1159/000458443

    Article  CAS  PubMed  Google Scholar 

  61. Berretta M, Caraglia M, Martellotta F et al (2016) Drug-drug interactions based on pharmacogenetic profile between highly active antiretroviral therapy and antiblastic chemotherapy in cancer patients with HIV infection. Front Pharmacol 7:71. https://doi.org/10.3389/fphar.2016.00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mounier N, Katlama C, Costagliola D et al (2009) Drug interactions between antineoplastic and antiretroviral therapies: Implications and management for clinical practice. Crit Rev Oncol Hematol 72:10–20. https://doi.org/10.1016/j.critrevonc.2008.10.013

    Article  PubMed  Google Scholar 

  63. Singano V, Amberbir A, Garone D et al (2017) The burden of gynecomastia among men on antiretroviral therapy in Zomba, Malawi. PLoS ONE 12:e0188379. https://doi.org/10.1371/journal.pone.0188379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dunlop JL, Slemming W, Schnippel K et al (2019) Breast abnormalities in adolescents receiving antiretroviral therapy. S Afr J HIV Med 20:1017. https://doi.org/10.4102/sajhivmed.v20i1.1017

    Article  Google Scholar 

  65. Shawarira-Bote S, Shamu T, Chimbetete C (2019) Gynecomastia in HIV-positive adult men receiving efavirenz-based antiretroviral therapy at Newlands clinic, Harare, Zimbabwe. BMC Infect Dis 19:715. https://doi.org/10.1186/s12879-019-4332-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sikora MJ, Rae JM, Johnson MD, Desta Z (2010) Efavirenz directly modulates estrogen receptor and induces breast cancer cell growth. HIV Med 11:603–607. https://doi.org/10.1111/j.1468-1293.2010.00831.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jin X, Jiang Y-Z, Chen S et al (2016) A nomogram for predicting pathological complete response in patients with human epidermal growth factor receptor 2 negative breast cancer. BMC Cancer. https://doi.org/10.1186/s12885-016-2652-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Cancer Institute of the National Institutes of Health (Grant Number NCI 1R01CA192627 to J.S.J, M.J., A.I.N. and P.R. and NCI 3P30CA13696 to A.I.N.), and the University of Witwatersrand/South African Medical Research Council (University of the Witwatersrand Common Epithelial Cancer Research Centre Grant to P.R.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the initial design of this study and interpretation of the data. SN, MJ, PR, IB, US, SČ, LS, and HC all participated in patient recruitment and contributed data. SN, DSO, OA, and WCC conducted the primary data analysis. DSO and SN wrote the initial manuscript and prepared the included tables and figures. AIN, PR, and HC provided supervision. All authors contributed revisions to the manuscript and approved of the final manuscript prior to submission.

Corresponding author

Correspondence to Daniel S O’Neil.

Ethics declarations

Conflict of interest

Dr. Neugut has received consulting fees from Otsuka, UBC, Hospira and EHE International. Dr. Ruff has received honoraria from Sanofi, Amgen, and Roche and research funding from Amgen, Sanofi, Merck, Novartis. All other authors declare they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board of Columbia University in New York City and the human research ethics committees of the University of Witwatersrand in Johannesburg and the University of KwaZulu Natal in Durban and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human and animal participants

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nietz, S., O’Neil, D.S., Ayeni, O. et al. A comparison of complete pathologic response rates following neoadjuvant chemotherapy among South African breast cancer patients with and without concurrent HIV infection. Breast Cancer Res Treat 184, 861–872 (2020). https://doi.org/10.1007/s10549-020-05889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05889-8

Keywords

Navigation