Lysine oxidase exposes a dependency on the thioredoxin antioxidant pathway in triple-negative breast cancer cells

Abstract

Purpose

Transformed cells are vulnerable to depletion of certain amino acids. Lysine oxidase (LO) catalyzes the oxidative deamination of lysine, resulting in lysine depletion and hydrogen peroxide production. Although LO has broad antitumor activity in preclinical models, the cytotoxic mechanisms of LO are poorly understood.

Methods

Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control media, lysine-free media or control media supplemented with LO and examined for cell viability, caspase activation, induction of reactive oxygen species (ROS) and antioxidant signaling. To determine the role of nuclear factor erythroid 2-related factor 2 (NRF2) and thioredoxin reductase-1 (TXNRD1) in LO-induced cell death, NRF2 and TXNRD1 were individually silenced by RNAi. Additionally, the pan-TXNRD inhibitor auranofin was used in combination with LO.

Results

LO activates caspase-independent cell death that is suppressed by necroptosis and ferroptosis inhibitors, which are inactive against lysine depletion, pointing to fundamental differences between LO and lysine depletion. LO rapidly induces ROS with a return to baseline levels within 24 h that coincides temporally with induction of TXNRD activity, the rate-limiting enzyme in the thioredoxin antioxidant pathway. ROS induction is required for LO-mediated cell death and NRF2-dependent induction of TXNRD1. Silencing NRF2 or TXNRD1 enhances the cytotoxicity of LO. The pan-TXNRD inhibitor auranofin is synergistic with LO against transformed breast epithelial cells, but not untransformed cells, underscoring the tumor-selectivity of this strategy.

Conclusions

LO exposes a redox vulnerability of TNBC cells to TXNRD inhibition by rendering tumor cells dependent on the thioredoxin antioxidant pathway for survival.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    CAS  Article  Google Scholar 

  2. 2.

    Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669

    CAS  Article  Google Scholar 

  3. 3.

    DeBerardinis RJ, Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    CAS  Article  Google Scholar 

  4. 4.

    Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433

    CAS  Article  Google Scholar 

  5. 5.

    Pokrovsky VS, Chepikova OE, Davydov DZ et al (2019) Amino acid degrading enzymes and their application in cancer therapy. Curr Med Chem 26:446–464

    CAS  Article  Google Scholar 

  6. 6.

    Egler RA, Ahuja SP, Matloub Y (2016) L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother 7:62–71

    CAS  Article  Google Scholar 

  7. 7.

    Jeon H, Kim JH, Lee E et al (2016) Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7:67223–67234

    Article  Google Scholar 

  8. 8.

    Cavuoto P, Fenech MF (2012) A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 38:726–736

    CAS  Article  Google Scholar 

  9. 9.

    Yong W, Zheng W, Zhang Y et al (2003) L-asparaginase-based regimen in the treatment of refractory midline nasal/nasal-type T/NK-cell lymphoma. Int J Hematol 78:163–167

    CAS  Article  Google Scholar 

  10. 10.

    Kusakabe H, Kodama K, Kuninaka A et al (1980) A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. J Biol Chem 255:976–981

    CAS  PubMed  Google Scholar 

  11. 11.

    Lukasheva EV, Efremova AA, Treshchalina EM et al (2012) L-amino acid oxidases: properties and molecular mechanisms of action. Biomed Khim 58:372–384

    CAS  Article  Google Scholar 

  12. 12.

    Pokrovsky VS, Treshalina HM, Lukasheva EV et al (2013) Enzymatic properties and anticancer activity of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anticancer Drugs 24:846–851

    CAS  Article  Google Scholar 

  13. 13.

    Lukasheva EV, Ribakova YS, Fedorova TN et al (2015) Effect of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai capital VE, Cyrilliccapital KA, Cyrilliccapital EM, CyrillicF-4268D on pheochromocytoma PC12 cell line. Biomed Khim 61:99–104

    CAS  Article  Google Scholar 

  14. 14.

    Treshalina HM, Lukasheva EV, Sedakova LA et al (2000) Anticancer enzyme L-lysine α-oxidase. Biotechnol Appl Biochem 88:267–273

    CAS  Article  Google Scholar 

  15. 15.

    Kusakabe H, Kodama K, Kuninaka A et al (1980) Effect of L-lysine α-oxidase on growth of mouse leukemic cells. Agric Biol Chem 44:387–392

    CAS  Google Scholar 

  16. 16.

    Munoz-Pinedo C, El Mjiyad N, Ricci JE (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248

    CAS  Article  Google Scholar 

  17. 17.

    Burns JS, Manda G (2017) Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci 18pii:E2755

  18. 18.

    Avramis VI (2012) Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Res 32:2423–2437

    CAS  PubMed  Google Scholar 

  19. 19.

    Strekalova E, Malin D, Good DM et al (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-2 expression. Clin Cancer Res 21:2780–2791

    CAS  Article  Google Scholar 

  20. 20.

    Tonjes M, Barbus S, Park YJ et al (2013) BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19:901–908

    Article  Google Scholar 

  21. 21.

    Sheen JH, Zoncu R, Kim D et al (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19:613–628

    CAS  Article  Google Scholar 

  22. 22.

    Ananieva E (2015) Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 6:281–289

    Article  Google Scholar 

  23. 23.

    Vanhove K, Derveaux E, Graulus GJ et al (2019) Glutamine addiction and therapeutic strategies in lung cancer. Int J Mol Sci 20:252

    Article  Google Scholar 

  24. 24.

    Strekalova E, Malin D, Rajanala H et al (2019) Preclinical breast cancer models to investigate metabolic priming by methionine restriction. Methods Mol Biol 1866:61–73

    CAS  Article  Google Scholar 

  25. 25.

    Strekalova E, Malin D, Weisenhorn EMM et al (2019) S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells. Breast Cancer Res Treat 175:39–50

    CAS  Article  Google Scholar 

  26. 26.

    Malin D, Chen F, Schiller C et al (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17:5005–5015

    CAS  Article  Google Scholar 

  27. 27.

    Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268

    CAS  Article  Google Scholar 

  28. 28.

    Shin S, Wakabayashi N, Misra V et al (2007) NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27:7188–7197

    CAS  Article  Google Scholar 

  29. 29.

    Lu M, Strohecker A, Chen F et al (2008) Aspirin sensitizes cancer cells to TRAIL-induced apoptosis by reducing survivin levels. Clin Cancer Res 14:3168–3176

    CAS  Article  Google Scholar 

  30. 30.

    Moyano JV, Evans JR, Chen F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270

    CAS  Article  Google Scholar 

  31. 31.

    Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    CAS  Article  Google Scholar 

  32. 32.

    Skouta R, Dixon SJ, Wang J et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556

    CAS  Article  Google Scholar 

  33. 33.

    Zhang J, Li X, Han X, Liu R, Fang J (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38:794–808

    CAS  Article  Google Scholar 

  34. 34.

    Cloer EW, Goldfarb D, Schrank TP et al (2019) NRF2 activation in cancer: from DNA to protein. Cancer Res 79:889–898

    CAS  Article  Google Scholar 

  35. 35.

    Roder C, Thomson MJ (2015) Auranofin: repurposing an old drug for a golden new age. Drugs R&D 15:13–20

    CAS  Article  Google Scholar 

  36. 36.

    Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    CAS  PubMed  Google Scholar 

  37. 37.

    Kocher R (1944) Effects of a low lysine diet on the growth of spontaneous mammary tumors in mice and on the N2 balance in man. Cancer Res 4:251–256

    CAS  Google Scholar 

  38. 38.

    Harris IS, Treloar AE, Inoue S et al (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–222

    CAS  Article  Google Scholar 

  39. 39.

    Yan X, Zhang X, Wang L et al (2019) Inhibition of thioredoxin/thioredoxin reductase induces synthetic lethality in lung cancers with compromised glutathione homeostasis. Cancer Res 79:125–132

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Nobunao Wakabayashi (Fred Hutchinson Cancer Research Center) for providing NRF2−/− MEFs used in these studies.

Funding

This work was supported by grants from the V Foundation for Cancer Research (VLC), Breast Cancer Research Foundation (VLC), Wisconsin Partnership Program, and National Institutes of Health University of Wisconsin Comprehensive Cancer Center P30CA14520 core facility support, the Russian Academic Excellence Project 5-100 (AZ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vincent L. Cryns.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 61 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chepikova, O.E., Malin, D., Strekalova, E. et al. Lysine oxidase exposes a dependency on the thioredoxin antioxidant pathway in triple-negative breast cancer cells. Breast Cancer Res Treat 183, 549–564 (2020). https://doi.org/10.1007/s10549-020-05801-4

Download citation

Keywords

  • Oxidative stress
  • Tumor dependency
  • Metabolism
  • Therapeutics